Synonyms
Mineral exploration Nonrenewable resource exploration; Oil and gas exploration
Definition
Use of remote sensing technology to directly or indirectly explore for occurrences of specific nonrenewable resources.
Remote sensing resource exploration
Introduction
Nonrenewable resources are a key part of daily life. Materials as varied as salt, silicon, clays, and diamonds are used in many products. Metals including lead, silver, copper, molybdenum, gold, and many others are used daily for both basic needs and in modern conveniences. Oil and gas provide power for automobiles and other transportation, lighting and heating, and manufacturing.
Classical resource exploration typically utilizes field geologic mapping of the physical characteristics of rocks and soils such as outcrop exposure, mineralogy, weathering characteristics, and geochemical and/or geophysical signatures to determine the nature and distribution of geologic units and associated resources. Structural/geomorphic...
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Bibliography
Asner, G. P., and Green, R. O., 2001. Imaging spectroscopy measures desertification in the Southwest U.S. and Argentina. Eos. Trans. AGU, 80, 601–605, doi:10.1029/01EO00346. http://dx.doi.org/10.1029/01EO00346 (September 2012).
Boardman, J. W., and Huntington, J. H., 1996. Mineral mapping with 1995 AVIRIS data. In Summaries of the 6th Annual JPL Airborne Earth Science Workshop, JPL Pub. 96–4, AVIRIS Workshop, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, Vol. 1, pp. 9–11.
Boardman, J. W., and Kruse, F. A., 1994. Automated spectral analysis: A geologic example using AVIRIS data, north Grapevine Mountains, Nevada. In Proceedings, Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, Ann Arbor, MI, pp. I-407–I-418.
Boardman, J. W., and F. A. Kruse, 2011, Analysis of Imaging Spectrometer Data Using N-Dimensional Geometry and A Mixture-Tuned Matched Filtering (MTMF) Approach, Transactions on Geoscience and Remote Sensing (TGARS), Special Issue on Spectral Unmixing of Remotely Sensed Data, 49(11), 4138–4152.
Boardman, J. W., Kruse, F. A., and Green, R. O., 1995. Mapping target signatures via partial unmixing of AVIRIS data. In Summaries, Fifth JPL Airborne Earth Science Workshop, JPL Publication 95–1, Vol. 1, pp. 23–26.
Broili, C., French, G. M., Shaddrick, D. R., and Weaver, R. R., 1988. Geology and gold mineralization of the Gold Bar deposit, Eureka county, Nevada. In Bulk Mineable Precious Metal Deposits of the Western United States, GSN Symposium Proceedings, pp. 57–72.
Clark, R. N., Swayze, G. A., Gallagher, A., King, T. V. V., and Calvin, W. M., 1993a. The U. S. Geological Survey Digital Spectral Library: Version 1: 0.2 to 3.0 μm. Washington, DC: U.S. Government Printing Office. U. S. Geological Survey, Open File Report 93–592, p. 1340. http://speclab.cr.usgs.gov (September 2012).
Clark, R. N., Swayze, G. A., and Gallagher, Al, 1993b. Mapping Minerals with Imaging Spectroscopy. Washington, DC: U.S. Government Printing Office. U.S. Geological Survey Bulletin 2039B, pp. 141–150.
Clark, R. N., Swayze, G. A., Rowan, L. C., Livo, K. E., and Watson, K., 1996. Mapping surficial geology, vegetation communities, and environmental materials in our national parks: The USGS imaging spectroscopy integrated geology, ecosystems, and environmental mapping project. In Summaries of the 6th Annual JPL Airborne Earth Science Workshop, JPL Pub. 96–4. AVIRIS Workshop, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, Vol. 1, pp. 55–56.
Cox, J. E., 1962. Patrick Draw field and Adjacent Areas, Sweetwater County, Wyoming. Billings Geol. Soc. Paper No. 1, pp. 1–17, Montana Geological Society (2010).
Crowley, J. K., 1993. Mapping playa evaporite mineral with AVIRIS data: a first report from Death Valley, California. Remote Sensing of Environment, 44(2–3), 337–356.
Crowley, J. K., and Zimbelman, D. R., 1996. Mapping hydrothermally altered rock on Mount Rainier, Washington, DC: Application of AVIRIS data to volcanic hazard assessments. In Summaries of the 6th Annual JPL Airborne Earth Science Workshop, JPL Pub. 96–4. AVIRIS Workshop, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, Vol. 1, pp. 63–66.
Cudahy, T. J., J. Wilson, R. Hewson, K. Okada, P. Linton, P. Harris, M. Sears, and J. A. Hackwell, 2001, Mapping Porphyry-Skarn Alteration at Yerington, Nevada, Using Airborne Hyperspectral VNIR-SWIR-TIR Imaging Data, in Proceedings IGARSS Geoscience and Remote Sensing International Symposium, 2, 631–633.
De Beukelaer, S. M., 2003. Remote Sensing Analysis of Natural Oil and Gas Seeps on The Continental Slope of The Northern Gulf of Mexico. Unpublished PhD thesis, Texas, Texas A&M University, 117 p. (http://txspace.tamu.edu/bitstream/handle/1969.1/1164/etd-tamu-2003B-2003070315-De%20B-1.pdf?sequence = 1)(September 2012).
Ellis, J. M., Davis, H. H., and Zamudio, J. A., 2001. Exploring for onshore oil seeps with hyperspectral imaging. Oil and Gas Journal, 99(37), 49–58.
Farrand, W. H., 1997. Identification and mapping of ferric oxide and oxyhydroxide minerals in imaging spectrometer data of Summitville, Colorado, U.S.A., and the surrounding San Juan Mountains. International Journal of Remote Sensing, 18(7), 1543–1552.
Fujisada, H., Sakuma, F., Ono, A., and Kudoh, M., 1998. Design and preflight performance of ASTER instrument protoflight model. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1152–1160, doi:10.1109/36.701022. http://dx.doi.org/10.1109/36.701022 (September 2012).
Gao, B., and Goetz, A. F. H., 1990. Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data. Journal of Geophysical Research, 95(D4), 3549–3564.
Gao, B., Montes, M. J., Davis, C. O., and Goetz, A. F. H., 2009. Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sensing of Environment, 113, 517–524.
Goetz, A. F. H., Vane, G., Solomon, J. E., and Rock, B. N., 1985. Imaging spectrometry for earth remote sensing. Science, 228, 1147–1153.
Green, R. O., Eastwood, M. L., and Sarture, C. M., 1998. Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS). Remote Sensing of Environment, 65(3), 227–248, doi:10.1016/S0034-4257(98)00064-9. http://dx.doi.org/10.1016/S0034-4257(98)00064-9 doi:10.1016/S0034-4257%2898%2900064-9 (September 2012).
Green, R. O., Chrien, T. G., and Pavri, B., 2003. On-orbit determination of the radiometric and spectral calibration of Hyperion using ground, atmospheric and AVIRIS underflight measurements. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1194–1203, doi:10.1109/TGRS.2003.813204. http://dx.doi.org/10.1109/TGRS.2003.813204 (September 2012).
Hook, S. J., 1990. The combined use of multispectral remotely sensed data from the short wave infrared (SWIR) and thermal infrared (TIR) for lithological mapping and mineral exploration. In Proceedings, Fifth Australasian Remote Sensing Conference, Perth, Western Australia, 1, pp. 371–380.
Hook, S. J., Myers, J. J., Thome, K. J., Fitzgerald, M., and Kahle, A. B., 2001. The MODIS/ASTER airborne simulator (MASTER) – a new instrument for earth science studies. Remote Sensing of Environment, 76, 93–102, doi:10.1016/S0034-4257(00)00195-4. http://dx.doi.org/10.1016/S0034-4257(00)00195-4 doi:10.1016/S0034-4257%2800%2900195-4 (September 2012).
Hubbard, B. E., and Crowley, J. K., 2001. Alteration mineral mapping in the Central Andes using Hyperion, ALI and ASTER. Geological Society of America, 33(6), A-319. Abstracts Programs, https://gsa.confex.com/gsa/2001 AM/finalprogram/abstract_22837.htm(September 2012).
JPL ASTER Website, 2012. http://asterweb.jpl.nasa.gov/instrument.asp (September 2012).
Kahle, A. B., Palluconi, F. D., Hook, S. J., Realmuto, V. J., and Bothwell, G., 1991. The advanced spaceborne thermal emission and reflectance radiometer (ASTER). International Journal of Imaging Systems and Technology, doi:10.1002/ima.1850030210.
Khan, S. D., and Jacobson, S., 2008. Remote sensing and geochemistry for detecting hydrocarbon microseepages. Geological Society of America, 120(1–2), 96–105, doi:10.1130/0016-7606(2008)120[96:RSAGFD]2.0.CO;2.
Kruse, F. A., 1988. Use of Airborne Imaging Spectrometer data to map minerals associated with hydrothermally altered rocks in the northern Grapevine Mountains, Nevada and California. Remote Sensing of Environment, 24(1), 31–51.
Kruse, F. A., 1996. Mineral mapping for environmental hazards assessment using AVIRIS data, Leadville, Colorado. In Proceedings, 11th Thematic Conference, Applied Geologic Remote Sensing, February, 27–29, 1996. Ann Arbor, MI: Environmental Research Institute of Michigan (ERIM), pp. II-526–II-533.
Kruse, F. A., 1999. Mapping hot spring deposits with AVIRIS at steamboat springs, Nevada. In Proceedings of the 8th JPL Airborne Earth Science Workshop: Jet Propulsion Laboratory Publication 99–17, Pasadena, CA, pp. 239–246.
Kruse, F. A., 2000. Mapping active and fossil hot springs systems using AVIRIS, HYMAP, TIMS and MASTER (Abst). In Proceedings, 14th Thematic Conference, Applied Geologic Remote Sensing, November 6–8, 2000, Las Vegas, NV. Ann Arbor, MI, Environmental Research Institute of Michigan (ERIM), p. 122.
Kruse, F. A., 2002. Combined SWIR and LWIR mineral mapping using MASTER/ASTER. In Proceedings, IGARSS 2002, June 24–28, 2002, Toronto, Canada. (Published on CD ROM – Paper Int1_B15_04, ISBN: 0-7803-7537-8. Also in hardcopy, v. IV, p. 2267–2269, IEEE Operations Center, Piscataway, NJ).
Kruse, F. A., 2004. Comparison of ATREM, ACORN, and FLAASH atmospheric corrections using low-altitude AVIRIS data of Boulder, Colorado. In Proceedings 13th JPL Airborne Geoscience Workshop, Jet Propulsion Laboratory, 31 March–2 April 2004, Pasadena, CA.
Kruse, F. A., 2012. Mapping surface mineralogy using imaging spectrometry. Geomorphology, 137(1), 41–56.
Kruse, F. A., Lefkoff, A. B., and Dietz, J. B., 1993. Expert system-based mineral mapping in northern Death Valley, California/Nevada using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing of Environment, 44, 309–336. Special issue on AVIRIS, May–June 1993.
Kruse, F. A., Boardman, J. W., and Huntington, J. F., 1999. Fifteen Years of hyperspectral data: northern Grapevine Mountains, Nevada. In Proceedings of the 8th JPL Airborne Earth Science Workshop: Jet Propulsion Laboratory Publication, JPL Publication 99–17, pp. 247–258.
Kruse, F. A., Boardman, J. W., and Huntington, J. F., 2003. Evaluation and validation of EO-1 hyperion for mineral mapping. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1388–1400, doi:10.1109/TGRS.2003.812908. http://dx.doi.org/10.1109/TGRS.2003.812908 (September 2012).
Kruse, F. A., Perry, S. L., and Caballero, A., 2006. District-level mineral survey using airborne hyperspectral data, Los Menucos, Argentina. Annals of Geophysics (Annali di Geofisica), 49(1), 83–92.
Lang, H. R., and Nadeau, P. H., 1984. Petroleum commodity report. In Abrams et al. (eds.), The Joint NASA/GeoSat Test Case Project Final Report. Tulsa, OK: The American Association of Petroleum Geologists Special Publication 2, part 2, pp. 10–1 to 10–28.
Lang, H. R., Alderman, W. H., and Sabins, F. F., 1984. Patrick Draw, Wyoming, Petroleum test case report. In Abrams (ed.), The Joint NASA/GeoSat Test Case Project Final Report. Tulsa, OK: The American Association of Petroleum Geologists Special Publication 2, part 2, pp. 11–1 to 11–112.
Lang, H. R., Adams, S. L., Conel, J. E., McGuffie, B. A., Paylor, E. D., and Walker, R. E., 1987. Multispectral remote sensing as stratigraphic tool, Wind River Basin and Big Horn Basin areas, Wyoming. American Association of Petroleum Geologists Bulletin, 71(4), 389–402.
Lyon, R. J. P., 1964. Evaluation of infrared spectrophotometry for compositional analysis of lunar and planetary soils, Part II: Rough and Powdered Surfaces. In NASA contractor Report CR-100, 262 p. Available at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19650001173_1965001173.pdf (September 2012).
MacDonald, I. R., Guinasso, N. L., Ackleson, S. G., Amos, J. F., Duckworth, R., Sassen, R., and Brooks, J. M., 1993. Natural oil slicks in the Gulf of Mexico visible from space. Journal of Geophysical Research, 98(C9), 16351–16364.
MacDonald, I. R., Reilly, J. F., Best, S. E., Venkataramaiah, R., Sassen, R., Guinasso, N. L., and Amos, J., 1996. Remote sensing inventory of active seeps and chemosynthetic communities in the Northern Gulf of Mexico. Hydrocarbon migration and its near-surface expression. AAPG Memoir, 66, 27–37.
Mars, J. C., and Rowan, L. C., 2006. Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometers (ASTER) data and logical operator algorithms. Geosphere, 2(3), 161–186, doi:10.1130/GES00044.1.
McCubbin, D. G., and Brady, M. J., 1963. Depositional environment of the Almond reservoirs, Patrick Draw field, Wyoming. The Mountain Geologist, 6, 3–36.
NASA Goddard EO-1, 2012. Website: http://eo1.gsfc.nasa.gov/ (September, 2012).
Nevada Bureau of Mines (2008). (http://www.nbmg.unr.edu/geothermal/site.php?sid=steamboathotsprings) (September 2012).
Pearlman, J. S., Barry, P. S., Segal, C. C., Shepanski, J., Beiso, D., and Carman, S. L., 2003. Hyperion, a space-based imaging spectrometer. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1160–1173, doi:10.1109/TGRS.2003.815018. http://ieeexplore.ieee.org/xpl/login.jsp?tp = &arnumber = 1220223 (September 2012) (September 2012).
Pieters, C. M., and Mustard, J. M., 1988. Exploration of crustal/mantle material for the earth and moon using reflectance spectroscopy. Remote Sensing of Environment, 24, 151–178.
Prost, G. L., 2001. Remote Sensing for Geologists, 2nd edn. New York: Gordon and Breach, p. 374. ISBN 90-5702-629-5.
Reston, M., and Cocks, T., 1998. Mapping mineralogy of the Mt. Fitton area, Flinders Ranges, South Australia, using HyMap airborne imaging spectrometer data. In Proceedings 9th Australasian Remote Sensing Conference, Sydney, July 1998.
Richers, D. M., Reed, R. J., Horstman, K. C., Michels, G. D., Baker, R. N., Lundell, L., and Marrs, R. W., 1982. Landsat and soil-gas geochemical study of Patrick Draw Oil Field, Sweetwater County, Wyoming. American Association of Petroleum Geologists Bulletin, 66, 903–922.
Richers, D. M., Jones, V. T., Matthews, M. D., Maciolek, J., Pirkle, R. J., and Sides, W. C., 1986. The 1983 Landsat soil-gas geochemical survey of Patrick Draw Area, Sweetwater County, Wyoming. American Association of Petroleum Geologists Bulletin, 70, 869–887.
Rowan, L. C., 1998. Analysis of simulated advanced spaceborne thermal emission and reflection (ASTER) radiometer data of the Iron Hill, Colorado, study area for mapping lithologies. Journal of Geophysical Research, 103(D24), 291–232.
Rowan, L. C., and Mars, J. C., 2003. Lithologic mapping in the mountain pass, California area using advanced spaceborne thermal emission and reflection spectrometer (ASTER) data. Remote Sensing of Environment, 84, 350–366, doi:10.1016/S0034-4257(02)00127-X. http://dx.doi.org/10.1016/S0034-4257(02)00127-X (September 2012).
Rowan, L. C., Bowers, T. L., Crowley, J. K., Anton-Pacheco, C., Gumiel, P., and Kingston, M. J., 1996. Analysis of airborne visible-infrared imaging spectrometer (AVIRIS) data of the Iron Hill, Colorado, carbonatite-alkalic igneous complex. Economic Geology and the Bulletin of the Society of Economic Geologists, 90, 1966–1982.
Rowan, L. C., Hook, S. J., Abrams, M. J., and Mars, J. C., 2003. Mapping hydrothermally altered rocks at Cuprite, Nevada, using the advanced spaceborne thermal emission and reflection radiometer (ASTER), a new satellite-imaging system. Economic Geology and the Bulletin of the Society of Economic Geologists, 98(5), 1019–1027.
Rowan, L. C., Simpson, C. J., and Mars, J. C., 2004. Hyperspectral analysis of the ultramafic complex and adjacent lithologies at Mordo NT, Australia. Remote Sensing of Environment, 91, 419–431.
Rowan, L. C., Simpson, C. J., and Mars, J. C., 2005. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sensing of Environment, 99, 105–126.
Sabins, F. F., 1997. Remote Sensing Principles and Interpretation, 3rd edn. Long Grove: Waveland, p. 494. ISBN 1577665074.
Salisbury, J. W., and D’Aria, D. M., 1992. Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote Sensing of Environment, 42, 83–106.
Salisbury, J. W., Walter, L. S., Vergo, N., and D’Aria, D. M., 1988. Infrared (2.1–13.5 micrometers) Spectra. Washington, DC: U.S. Govt. Printing Office. U. S. Geological Survey Open-file Report 88–686.
Salisbury, J. W., Walter, L. S., Vergo, N., and D’Aria, D. M., 1992. Infrared (2.1– 25 micrometers) Spectra of Minerals. Baltimore, MD: Johns Hopkins University Press. 294 p.
Schoen, R., and White, D. E., 1967. Hydrothermal Alteration of Basaltic Andesite and Other Rocks in Drill Hole GS-6, Steamboat Springs, Nevada. Washington, DC: U.S. Govt. Printing Office. U.S. Geological Survey Professional Paper 575-B, pp. 110–119.
Schoen, R., White, D. E., and Hemley, J. J., 1974. Argillization by descending acid at Steamboat Springs, Nevada. Clays and Clay Minerals, 22, 1–22.
Scott, L. F., McCoy, R. M., and Wullstein, L. H., 1989. Anomaly may not reflect hydrocarbon seepage: Patrick Draw field, Wyoming. AAPG Bulletin, 73(7), 925–934. revisited: American Association of Petroleum Geologists.
Sigvaldason, G. E., and White, D. E., 1962. Hydrothermal Alteration in Drill Holes GS-5 and GS-7, Steamboat Springs, Nevada. Washington, DC: U.S. Govt. Printing Office. U.S. Geological Survey Professional Paper 450-D, pp. D113–D117.
Silberman, M. L., White, D. E., Keith, T. E. C., and Docktor, R. D., 1979. Duration of hydrothermal activity at Steamboat Springs, Nevada, from ages of the spatially associated volcanic rock. Washington, DC: U.S. Govt. Printing Office. U. S. Geological Survey Professional Paper 458-D. 14 p.
Swayze, G. A., Smith, K. S., Clark, R. N., Sutley, S. J., Pearson, R. M., Vance, J. S., Hageman, P. L., Briggs, P. H., Meier, A. L., Singleton, M. J., and Roth, S., 2000. Using imaging spectroscopy to map acidic mine waste. Environmental Science and Technology, 34, 47–54.
Taranik, D. L., and Kruse, F. A., 1989. Iron mineral reflectance in geophysical and environmental research imaging spectrometer (GERIS) data. In Proceedings, International Symposium on Remote Sensing of Environment, Thematic Conference on Remote Sensing for Exploration Geology, 7th, October 2–6, 1989, Calgary, Alberta, Canada. Ann Arbor: Environmental Research Institute of Michigan, pp. 445–458.
Ungar, S., Pearlman, J., Mendenhall, J., and Reuter, D., 2003. Overview of the Earth observing one (EO-1) mission. IEEE Transactions on Geoscience and Remote Sensing, 41(6), doi:10.1109/TGRS.2003.815999. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber = 1220222(September 2012).
USGS E0-1, 2012. Website: http://eo1.usgs.gov/ (September 2012).
van der Meer, F., van Dijk, P., van der Werff, H., and Yang, H., 2002. Remote sensing and petroleum seepage; a review and case study. Terra Nova, 14(1), 1–17.
Weimer, R. J., 1966. Time-stratigraphic analysis and petroleum accumulations, Patrick Draw field, Sweetwater County, Wyoming. AAPG Bulletin, 50(10), 2150–2175.
White, D. E., 1955. Thermal springs and epithermal ore deposits. Economic Geology, 15, 99–154.
White, D. E., 1967. Some principles of geyser activity, mainly from Steamboat Springs, Nevada. American Journal of Science, 265(8), 641–684.
White, D. E., 1968. Hydrology, Activity, and Heat Flow of the Steamboat Springs Thermal Systems, Washoe County, Nevada. Washington, DC: U.S. Govt. Printing Office. U. S. Geological Survey Professional Paper 458-C. 109 p.
White, D. E., 1981. Active geothermal systems and hydrothermal ore deposits. Economic Geology, 75, 392–423.
White, D. E., Anderson, E. T., and Grubbs, D. K., 1963. Geothermal brine well/mile-deep drill hole may tap ore-bearing magmatic water and rocks undergoing metamorphism. Science, 139, 919–922.
White, D. E., Thompson, G. A., and Sanberg, C. S., 1964. Rocks, Structure, and Geologic History of Steamboat Springs thermal area, Washoe County, Nevada. Washington, DC: U.S. Govt. Printing Office. U. S. Geological Survey Professional Paper 458-B. 63 p.
White, D. E., Heropoulos, C., and Fournier, R. O., 1992. Gold and other minor elements associated with the hot springs and geysers of Yellowstone National Park, Wyoming, supplemented with data from Steamboat Springs, Nevada. Denver, CO: U.S. Geological Survey. U.S. Geological Survey Bulletin 2001. 19 p.
Yamaguchi, A. B., Kahle, H., Tsu, T. K., and Pniel, M., 1998. Overview of advanced spaceborne thermal emission reflectance radiometer. IEEE Transactions on Geoscience and Remote Sensing, 36, 1062–1071, doi:10.1109/36.700991. http://dx.doi.org/10.1109/36.700991 (September 2012).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this entry
Cite this entry
Kruse, F.A., Perry, S.L. (2014). Resource Exploration. In: Njoku, E.G. (eds) Encyclopedia of Remote Sensing. Encyclopedia of Earth Sciences Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36699-9_161
Download citation
DOI: https://doi.org/10.1007/978-0-387-36699-9_161
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-36698-2
Online ISBN: 978-0-387-36699-9
eBook Packages: Earth and Environmental ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences