Autonomic and Coevolutionary Sensor Networking | SpringerLink
Skip to main content

Autonomic and Coevolutionary Sensor Networking

  • Chapter
  • First Online:
Autonomic Communication

Abstract

(WSNs) applications are often required to balance the tradeoffs among conflicting operational objectives (e.g., latency and power consumption) and operate at an optimal tradeoff. This chapter proposes and evaluates a architecture, called BiSNET/e, which allows WSN applications to overcome this issue. BiSNET/e is designed to support three major types of WSN applications: , and hybrid applications. Each application is implemented as a decentralized group of, which is analogous to a bee colony (application) consisting of bees (agents). Agents collect sensor data or detect an event (a significant change in sensor reading) on individual nodes, and carry sensor data to base stations. They perform these data collection and event detection functionalities by sensing their surrounding network conditions and adaptively invoking behaviors such as pheromone emission, reproduction, migration, swarming and death. Each agent has its own behavior policy, as a set of genes, which defines how to invoke its behaviors. BiSNET/e allows agents to evolve their behavior policies (genes) across generations and autonomously adapt their performance to given objectives. Simulation results demonstrate that, in all three types of applications, agents evolve to find optimal tradeoffs among conflicting objectives and adapt to dynamic network conditions such as traffic fluctuations and node failures/additions. Simulation results also illustrate that, in hybrid applications, data collection agents and event detection agents coevolve to augment their adaptability and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akkaya, K., Younis, M.: A survey of routing protocols in wireless sensor networks. Elsevier Ad Hoc Networks 3(3), 325–349 (2005)

    Article  Google Scholar 

  2. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: A survey. Elsevier J. of Computer Networks 38(4), 393–422 (2002)

    Article  Google Scholar 

  3. Albert, R., Jeong, H., Barabasi, A.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)

    Article  Google Scholar 

  4. Baldi, P., Nardis, L. D., Benedetto, M. G. D.: Modeling and optimization of uwb communication networks through a flexible cost function. IEEE J. on Sel. Areas in Comm. 20(9), 1733–1744 (2002)

    Article  Google Scholar 

  5. Beegle-Krause, C.: General NOAA oil modeling environment (GNOME): A new spill trajectory model. In: Proc. of Int'l Oil Spill Conf. (2001)

    Google Scholar 

  6. Blumenthal, J., Handy, M., Golatowski, F., Haase, M., Timmermann, D.: Wireless sensor networks – new challenges in software engineering. In: Proc. of IEEE Emerging Technologies and Factory Automation (2003)

    Google Scholar 

  7. Boonma, P., Suzuki, J.: BiSNET: A biologically-inspired middleware architecture for self-managing wireless sensor networks. Elsevier J. of Computer Networks 51 (2007)

    Google Scholar 

  8. Boonma, P., Suzuki, J.: Evolutionary constraint-based multiobjective adaptation for self-organizing wireless sensor networks. In: Proc. of ACM/IEEE/Create-Net/ICST Int'l Conf. Bio-Inspired Models of Network, Info. and Comp. Sys. (2007)

    Google Scholar 

  9. Boonma, P., Suzuki, J.: Monsoon: A coevolutionary multiobjective adaptation framework for dynamic wireless sensor networks. In: Proc. of IEEE Hawaii Int'l Conf on System Sciences (2008)

    Google Scholar 

  10. Buczaka, A.L., Wangb, H.: Optimization of fitness functions with non-ordered parameters by genetic algorithms. In: Proc. of IEEE Congress on Evolutionary Comp. (2001)

    Google Scholar 

  11. Chintalapudi, K. K., Govindan, R.: Localized edge detection in sensor fields. Elsevier Ad-hoc Networks 1, 59–70 (2003)

    Google Scholar 

  12. Ferentinos, K. P., Tsiligiridis, T. A.: Adaptive design optimization of wireless sensor networks using genetic algorithms. Elsevier J. of Computer Nets. 51(4), 1031–1051 (2007)

    MATH  Google Scholar 

  13. Fok, C.L., Roman, G.C., Lu, C.: Rapid development and flexible deployment of adaptive wireless sensor network applications. In: Proc. of IEEE Int'l Conf. on Distributed Computing Systems (2005)

    Google Scholar 

  14. Free, J. B., Williams, I. H.: The role of the nasonov gland pheromone in crop communication by honey bees. Brill Int'l J. of Behavioural Biology 41(3–4), 314–318 (1972)

    Google Scholar 

  15. Guo, H.Y., Zhang, L., Zhang, L. L., Zhou, J. X.: Optimal placement of sensors for structural health monitoring using improved genetic algorithms. IOP Smart Materials and Structures 13(3), 528–534 (2004)

    Article  Google Scholar 

  16. Han, Q., Mehrotra, S., Venkatasubramanian, N.: Energy efficient data collection in distributed sensor environments. In: Proc. of IEEE Int'l Conf. on Distributed Computing Systems (2004)

    Google Scholar 

  17. Hauser, J., Purdy, C.: Sensor data processing using genetic algorithms. In: Proc. of IEEE Midwest Symp. on Circuits and Systems (2000)

    Google Scholar 

  18. Hussain, S., Matin, A.W.: Hierarchical cluster-based routing in wireless sensor networks. In: Proc. of IEEE/ACM Conf. on Info. Processing in Sensor Nets (2006)

    Google Scholar 

  19. Jia, J., Chen, J., Chang, G., Tan, Z.: Energy efficient coverage control in wireless sensor networks based on multi-objective genetic algorithm. Elsevier Computers & Mathematics with Applications 10 (2008)

    Google Scholar 

  20. Jin, S., Zhou, M., Wu, A.S.: Sensor network optimization using a genetic algorithm. In: Proc. of IIIS World Multiconf. on Systemics, Cybernetics and Informatics (2003)

    Google Scholar 

  21. Jourdan, D.B., de Weck, O.L.: Multi-objective genetic algorithm for the automated planning of a wireless sensor network to monitor a critical facility. In: Proc. of SPIE Defense and Security Symp. (2004)

    Google Scholar 

  22. Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. Wiley-Interscience (2007)

    Google Scholar 

  23. Khanna, R., Liu, H., Chen, H.: Self-organisation of sensor networks using genetic algorithms. Inderscience Int'l J. of Sensor Networks 1(3), 241–252 (2006)

    Article  Google Scholar 

  24. Leibnitz, K., Wakamiya, N., Murata, M.: Biologically inspired networking. In: Q. Mahmoud (ed.) Cognitive Networks: Towards Self-Aware Networks. Wiley (2007)

    Google Scholar 

  25. Li, D., Wong, K. D., Hu, Y., Sayeed, A. M.: Detection, classification, and tracking of targets. IEEE Signal Processing Magazine 19(2), 17–20 (2002)

    Article  Google Scholar 

  26. Mathur, G., Desnoyers, P., Genesan, D., Shenoy, P.: Ultra-low power data storage for sensor networks. In: Proc. of IEEE/ACM Conf. on Info. Processing in Sensor Nets (2006)

    Google Scholar 

  27. Molina, G., Alba, E., Talbi, E. G.: Optimal sensor network layout using multi-objective metaheuristics. J. of Universal Computer Science 14(15), 2549–2565 (2008)

    Google Scholar 

  28. Phoha, S., La Porta, T.F., Griffin, C.: Sensor Network Operations. Wiley-IEEE Press (2006)

    Google Scholar 

  29. Raich, A.M., Liszkai, T.R.: Multi-objective genetic algorithm methodology for optimizing sensor layouts to enhance structural damage identification. In: Proc. of Int'l Workshop on Structural Health Monitoring (2003)

    Google Scholar 

  30. Rajagopalan, R., Mohan, C., Varshney, P., Mehrotra, K.: Multi-objective mobile agent routing in wireless sensor networks. In: Proc. of IEEE Congress on Evolutionary Comp. (2005)

    Google Scholar 

  31. Rajagopalan, R., Varshney, P.K., Mehrotra, K.G., Mohan, C.K.: Fault tolerant mobile agent routing in sensor networks: A multi-objective optimization approach. In: Proc. of IEEE Upstate New York Workshop on Communication and Networking (2005)

    Google Scholar 

  32. Rajagopalan, R., Varshney, P.K., Mohan, C.K., Mehrotra, K.G.: Sensor placement for energy efficient target detection in wireless sensor networks: A multi-objective optimization approach. In: Proc. of IEEE Annual Conf. on Information Sciences and Systems (2005)

    Google Scholar 

  33. Rentala, P., Musunuri, R., Gandham, S., Sexena, U.: Survey on sensor networks. In: Proc. of ACM Int'l Conf. on Mobile Computing and Networking (2001)

    Google Scholar 

  34. Seeley, T.: The Wisdom of the Hive. Harvard University Press (2005)

    Google Scholar 

  35. Sin, H., Lee, J., Lee, S., Yoo, S., Lee, S., Lee, J., Lee, Y., , Kim, S.: Agent-based framework for energy efficiency in wireless sensor networks. World Academy of Science, Engineering and Technology 35, 305–309 (2008)

    Google Scholar 

  36. Srinivas, M., Patnaik, L.: Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Tran. on Systems, Man and Cybernetics 24(4), 656–667 (1994)

    Article  Google Scholar 

  37. Szumel, L., Owens, J.D.: The virtual pheromone communication primitive. In: Proc. of IEEE Int'l Conf. on Distributed Computing in Sensor Systems (2006)

    Google Scholar 

  38. Tam, V., Cheng, K. Y., Lui, K. S.: Using micro-genetic algorithms to improve localization in wireless sensor networks. Academy J. of Comm. 1(4), 1–10 (2006)

    Google Scholar 

  39. Wada, H., Boonma, P., Suzuki, J.: Macroprogramming spatio-temporal event detection and data collection in wireless sensor networks: An implementation and evaluation study. In: Proc. of IEEE Hawaii Int'l Conf on System Sciences (2008)

    Google Scholar 

  40. Xuea, F., Sanderson, A., Graves, R.: Multi-objective routing in wireless sensor networks with a differential evolution algorithm. In: Proc. of IEEE Int'l Conf. on Networking, Sensing and Control (2006)

    Google Scholar 

  41. Yang, E., Erdogan, A.T., Arslan, T., Barton, N.: Multi-objective evolutionary optimizations of a space-based reconfigurable sensor network under hard constraints. In: Proc. of ECSIS Symp. on Bio-inspired, Learning, and Intelligent Sys. for Security (2007)

    Google Scholar 

  42. Zhang, Q., Wang, J., Jin, C., Ye, J., Ma, C., Zhang, W.: Genetic algorithm based wireless sensor network localization. In: Proc. of IEEE Int'l Conf. on Natural Computation (2008)

    Google Scholar 

  43. Zhao, J., Wen, Y., Shang, R., Wang, G.: Optimizing sensor node distribution with genetic algorithm in wireless sensor network. In: Proc. of IEEE Int'l Symp. on Neural Nets. (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pruet Boonma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boonma, P., Suzuki, J. (2009). Autonomic and Coevolutionary Sensor Networking. In: Vasilakos, A., Parashar, M., Karnouskos, S., Pedrycz, W. (eds) Autonomic Communication. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09753-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09753-4_14

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09752-7

  • Online ISBN: 978-0-387-09753-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics