Some Remarks on Completeness, Connection Graph Resolution, and Link Deletion | SpringerLink
Skip to main content

Some Remarks on Completeness, Connection Graph Resolution, and Link Deletion

  • Conference paper
  • First Online:
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1397))

Abstract

A new completeness proof that generalizes the Anderson-Bledsoe excess literal argument is developed for connection-graph resolution. The technique also provides a simplified completeness proof for semantic resolution. Some observations about subsumption and about link deletion are made. Link deletion is the basis for connection graphs. Subsumption plays an important role in most resolution-based inference systems. In some settings—for example, connection graphs in negation normal form—both subsumption and link deletion can be quite tricky. Nevertheless, a completeness result that uses both is obtained in this setting.

This research was supported in part by the National Science Foundation under grants CCR-9404338 and CCR-9504349 and by the Deutsche Forschungsgemeinschaft within Schwerpunktprogramm Deduktion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Anderson and W. Bledsoe. A linear format for resolution with merging and a new technique for establishing completeness. JACM, 17(3):525–534, July 1970.

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Bachmair and H. Ganzinger. A theory of resolution. Technical Report MPI-I-97-2-005, Max-Planck-Institut für Informatik, Saarbrücken, 1997. To appear in: J. A. Robinson & A. Voronkov (eds.), Handbook of Automated Reasoning, Elsevier.

    Google Scholar 

  3. W. Bibel. On matrices with connections. JACM, 28:633–645, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  4. W. Bibel and E. Eder. Decomposition of tautologies into regular formulas and strong completeness of connection graph resolution. JACM, 44(2):320–344, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. CACM, 5:394–397, 1962.

    MATH  MathSciNet  Google Scholar 

  6. R. Hähnle, N. Murray, and E. Rosenthal. Completeness for linear regular negation normal form inference systems. In Z. W. Raś and A. Skowron, editors, Found. of Intelligent Systems ISMIS’97, Charlotte/NC, USA, volume 1325 of LNCS, pages 590–599. Springer-Verlag, 1997.

    Google Scholar 

  7. R. Hähnle, N. Murray, and E. Rosenthal. A remark on proving completeness. In D. Galmiche, editor, Position Papers at Conf. on Analytic Tableaux and Related Methods, Nancy, France, pages 41–47, 1997. Tech. Rep. 97-R-030, CRIN Nancy.

    Google Scholar 

  8. R. Kowalski. A proof procedure using connection graphs. JACM, 22(4):572–595, 1975.

    Article  MATH  Google Scholar 

  9. N. Murray, A. Ramesh, and E. Rosenthal. The semi-resolution inference rule and prime implicate computations. In Proc. Fourth Golden West International Conference on Intelligent Systems, San Fransisco, CA, USA, pages 153–158, June 1995.

    Google Scholar 

  10. N. V. Murray and E. Rosenthal. Inference with path resolution and semantic graphs. JACM, 34(2):225–254, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  11. N. V. Murray and E. Rosenthal. Dissolution: Making paths vanish. JACM, 40(3):504–535, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. A. Robinson. The generalized resolution principle. In Machine Intelligence, volume 3, pages 77–93. Oliver and Boyd, Edinburgh, 1968.

    Google Scholar 

  13. M. E. Stickel. A nonclausal connection-graph resolution theorem-proving program. In D. Waltz, editor, Proc. National Conference on Artificial Intelligence, pages 229–233, Pittsburgh, PA, Aug. 1982. AAAI Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hähnle, R., Murray, N.V., Rosenthal, E. (1998). Some Remarks on Completeness, Connection Graph Resolution, and Link Deletion. In: de Swart, H. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 1998. Lecture Notes in Computer Science(), vol 1397. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69778-0_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-69778-0_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64406-4

  • Online ISBN: 978-3-540-69778-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics