Categories of relational structures | SpringerLink
Skip to main content

Categories of relational structures

  • Contributed Papers
  • Conference paper
  • First Online:
Recent Trends in Algebraic Development Techniques (WADT 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1376))

Included in the following conference series:

Abstract

We characterise compositional homomorphims of relational structures. A study of three categories of such structures — viewed as multialgebras — reveals the one with the most desirable properties. We study also analogous categories with homomorphisms mapping elements to sets (thus being relations). Finally, we indicate some consequences of our results for partial algebras which are special case of multialgebras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bialasik, M. and Konikowska, B. Reasoning with nondeterministic specifications. Tech. Rep. 793, Polish Academy of Sciences, Institute of CS. (1995).

    Google Scholar 

  2. Bialasik, M. and Walicki, M. Relations, multialgebras and homomorphisms. Tech. Rep. 838, Polish Academy of Sciences, Institute of CS. (1997).

    Google Scholar 

  3. Boyd, J. P. Relational homomorphisms. Social Networks 14, 163–186. (1992).

    Google Scholar 

  4. Brink, C. Power structures. Algebra Universalis 30, 177–216. (1993).

    Google Scholar 

  5. Brink, C., Jacobs, D., Netle, K., and Sekran, R. Generalized quotient algebras and power algebras. (1997), [unpublished].

    Google Scholar 

  6. Burmeister, P.A Model Theoretic Oriented Approach to Partial Algebras. Akademie-Verlag, Berlin. (1986).

    Google Scholar 

  7. Cohn, P. M.Universal Algebra. D. Reidel Publishing Company. (1981), [series “Mathematics and Its Applications”, vol. 6].

    Google Scholar 

  8. Elienberg, S. and Wright, J. Automata in general algebras. Information and Control 11, 425–470. (1967).

    Google Scholar 

  9. Glenn, P. Identification of certain structures as split opfibrations over Δop. (1997), [to appear in Journal of Pure and Applied Algebra].

    Google Scholar 

  10. Goldblatt, R. Varieties of complex algebras. Annals of Pure and Applied Logic 44, 173–242. (1989).

    Google Scholar 

  11. Grätzer, G.Universal Algebra. Springer. (1968).

    Google Scholar 

  12. Grätzer, G. and Whitney, S. Infinitary varieties of structures closed under the formation of complex structures. Colloq. Math. 48. (1984).

    Google Scholar 

  13. Hussmann, H. Nondeterministic algebraic specifications and nonconfluent term rewriting. In Algebraic and Logic Programming. LNCS vol. 343, Springer. (1988).

    Google Scholar 

  14. Hussmann, H.Nondeterminism in Algebraic Specifications and Algebraic Programs. Birkhäuser. (1993).

    Google Scholar 

  15. Jónsson, B. and Tarski, A. Boolean algebras with operators I. American J. Mathematics 73, 891–939. (1951).

    Google Scholar 

  16. Jónsson, B. and Tarski, A. Boolean algebras with operators II. American J. Mathematics 74, 127–162. (1952).

    Google Scholar 

  17. Kapup, D.Towards a Theory of Abstract Data Types. Ph. D. thesis, Laboratory for CS, MIT. (1980).

    Google Scholar 

  18. Loś, J. Homomorphisms of relations. (1985), [manuscript, Warszawa].

    Google Scholar 

  19. Madarász, R. Remarks on power structures. Algebra Universalis 34, 2, 179–184. (1995).

    Google Scholar 

  20. Mostowski, A.Mathematical Logic. Warszawa-Wroclaw. (1948), [in Polish].

    Google Scholar 

  21. Nipkow, T. Non-deterministic data types: models and implementations. Acta Informatica 22, 629–661. (1986).

    Article  Google Scholar 

  22. Nipkow, T.Observing non-deterministic data types. LNCS vol. 332, (1987).

    Google Scholar 

  23. Pattison, P. The analysis of semigroups of multirelational systems. J. Mathematical Psychology 25, 87–117. (1982).

    Google Scholar 

  24. Pickert, G. Bemerkungen zum homomorphie-begriff. Mathematische Zeitschrift 53. (1950).

    Google Scholar 

  25. Pickett, H. Homomorphisms and subalgebras of multialgebras. Pacific J. of Mathematics21, 327–342. (1967).

    Google Scholar 

  26. Topentcharov, V. V. Composition générale des relations. Algebra Universalis 30, 119–139. (1993).

    Google Scholar 

  27. Walicki, M. and Broy, M. Structured specifications and implementation of nondeterministic data types. Nordic Journal of Computing 2, 358–395. (1995).

    Google Scholar 

  28. Walicki, M. and Meldal, S.Multialgebras, power algebras and complete calculi of identities and inclusions. LNCS vol. 906, Springer. (1995).

    Google Scholar 

  29. Walicki, M. and Meldal, S. Algebraic approaches to nondeterminism — an overview. ACM Computing Surveys, vol. 29, no. 1 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesco Parisi Presicce

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Walicki, M., Białasik, M. (1998). Categories of relational structures. In: Presicce, F.P. (eds) Recent Trends in Algebraic Development Techniques. WADT 1997. Lecture Notes in Computer Science, vol 1376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-64299-4_48

Download citation

  • DOI: https://doi.org/10.1007/3-540-64299-4_48

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64299-2

  • Online ISBN: 978-3-540-69719-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics