Abstract
We prove cocompleteness of the category of CASL signatures, of monotone signatures, of strongly regular signatures and of strongly locally filtered signatures. This shows that using these signature categories is compatible with a pushout or colimit based module system.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. Adámek, H. Herrlich, and G. Strecker. Abstract and Concrete Categories. Wiley, New York, 1990.
F. Borceux. Handbook of Categorical Algebra I-III. Cambridge University Press, 1994.
R. M. Burstall and J. A. Goguen. Putting theories together to make specifications. In Proceedings of the 5th International Joint Conference on Artificial Intelligence, pages 1045–1058. Cambridge, 1977.
M. Cerioli, A. Haxthausen, B. Krieg-Briickner, and T. Mossakowski. Permissive subsorted partial logic in CASL. In M. Johnson, editor, Algebraic methodology and software technology: 6th international conference, AMAST 97, volume 1349 of Lecture Notes in Computer Science. Springer-Verlag, 1997.
CoFI Task Group on Language Design. CASL-The CoFI Algebraic Specification Language-Summary. CoFI Document: CASL/Summary. WWW12, FTP13 September 1997.
CoFI Task Group on Semantics. CASL-The CoFI Algebraic Specification Language (version 0.97)-Semantics. CoFI Note: S-6. WWW14, FTP15, July 1997.
R. Diaconescu and K. Futatsugi. Logical semantics of CafeOBJ. Technical report IS-RR-96-0024S, JAIST, 1996.
J. A. Goguen. A categorical manifesto. Mathematical Structures in Computer Science, 1:49–67, 1991.
J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for specification and programming. Journal of the Association for Computing Machinery, 39:95–146, 1992. Predecessor in: LNCS 164, 221–256, 1984.
J. A. Goguen and J. Meseguer. Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theoretical Computer Science, 105:217–273, 1992.
J. A. Goguen and T. Winkler. Introducing OBJ3. Research report SRI-CSL-88-9, SRI International, 1988.
A. Haxthausen and F. Nickl. Pushouts of order-sorted algebraic specifications. In Proceedings of AMAST'96, volume 1101 of Lecture Notes in Computer Science, pages 132-?? Springer-Verlag, 1996.
T. Mossakowski. Equivalences among various logical frameworks of partial algebras. In H. K. Büning, editor, Computer Science Logic. 9th Workshop, CSL'95. Paderborn, Germany, September 1995, Selected Papers, volume 1092 of Lecture Notes in Computer Science, pages 403–433. Springer Verlag, 1996.
T. Mossakowski, Kolyang, and B. Krieg-Briickner. Static semantic analysis of CASL. 12th Workshop on Algebraic Development Techniques, Tarquinia. This volume, 1997.
P. D. Mosses. CoFI: The common framework initiative for algebraic specification and development. In M. Bidoit and M. Dauchet, editors, Theory and Practice of Software Development, LNCS 1214, pages 115–137. Springer Verlag, 1997.
O. Owe and O.-J. Dahl. Generator induction in order sorted algebras. Formal Aspects of Computing, 3:2–20, 1991.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mossakowski, T. (1998). Colimits of order-sorted specifications. In: Presicce, F.P. (eds) Recent Trends in Algebraic Development Techniques. WADT 1997. Lecture Notes in Computer Science, vol 1376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-64299-4_42
Download citation
DOI: https://doi.org/10.1007/3-540-64299-4_42
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64299-2
Online ISBN: 978-3-540-69719-0
eBook Packages: Springer Book Archive