Abstract
We investigate modular properties of term rewriting systems, the basic operational formalism for equational specifications. First we study sufficient conditions for the preservation of the termination property under disjoint (and more general) combinations of term rewriting systems. By means of a refined analysis of existing approaches we show how to prove several new asymmetric preservation results. For this purpose we introduce two interesting new properties of term rewriting systems related to collapsing reductions: uniquely collapsing and collapsing confluent. We discuss these properties w.r.t. well-known confluence, and normal form properties, and show that they are modular consistency for left-linear systems, but not in general.
This work was supported by a Marie Curie Research Fellowship of the European Community under contract No ERBFMBICT961235.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
L. Bachmair and N. Dershowitz. Commutation, transformation, and termination. In J. Siekmann, ed., Proc. 8th CADE, LNCS 230, pp. 5–20. Springer, 1986.
N. Dershowitz. Hierarchical termination. In N. Dershowitz and N. Lindenstrauss, eds., Proc. 4th CTRS (1994), LNCS 968, pp. 89–105. Springer, 1995.
N. Dershowitz. Innocuous constructor-sharing combinations. In H. Comon, ed., Proc. 8th RTA, LNCS 1232, pp. 202–216. Springer, 1997.
N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, ed., Formal models and semantics, Handbook of Theoretical Computer Science, volume, B, chapter 6, pp. 243–320. Elsevier-The MIT Press, 1990.
K. Drosten. Termersetzungssysteme. Informatik-Fachberichte 210. Springer, 1989.
M. Fernández and J.-P. Jouannaud. Modular termination of term rewriting systems revisited. In Recent Trends in Data Type Specification, LNCS 906, pp. 255–272, Springer, 1995.
B. Gramlich. Generalized sufficient conditions for modular termination of rewriting. Applicable Algebra in Engineering, Communication and Computing, 5:131–158, 1994.
B. Gramlich. Abstract relations between restricted termination and confluence properties of rewrite systems. Fundamenta Informaticae, 24:3–23, 1995.
B. Gramlich. Termination and Confluence Properties of Structured Rewrite Systems. PhD thesis, Fachbereich Informatik, Universität Kaiserslautern, Jan. 1996.
J. W. Klop. Term rewriting systems.In S. Abramsky, D. Gabbay, and T. Maibaum, eds., Handbook of Logic in Computer Science, volume 2, chapter 1, pp. 2–117. Clarendon Press, Oxford, 1992.
J. W. Klop, A. Middeldorp, Y. Toyama, and R. Vrijer. Modularity of confluence: A simplified proof. Information Processing Letters, 49:101–109, 1994.
M.R.K. Krishna Rao. Modular proofs for completeness of hierarchical term rewriting systems. Theoretical Computer Science, 151(2):487–512, Nov. 1995.
M. Marchiori. Modularity of UN→ for left-linear term rewriting systems. Technical Report CS-119433, CWI, Amsterdam, May 1994.
M. Marchiori. Modularity of Completeness Revisited. In J. Hsiang, ed., Proc. 6th RTA, LNCS 914, pp. 2–10. Springer, 1995.
A. Middeldorp. Modular Properties of Term Rewriting Systems. PhD thesis, Free University, Amsterdam, 1990.
A. Middeldorp, H.Ohsaki and H. Zantema. Transforming termination by self-labelling. In Proc. 13th CADE, LNAI 1104, pp. 373–387. Springer, 1996.
A. Middeldorp and Y. Toyama. Completeness of combinations of constructor systems. Journal of Symbolic Computation, 15:331–348, Sept. 1993.
E. Ohlebusch. Modular Properties of Composable Term Rewriting Systems. PhD thesis, Universität Bielefeld, 1994. Report 94-01.
E. Ohlebusch. On the modularity of termination of term rewriting systems. Theoretical Computer Science, 136:333–360, 1994.
E. Ohlebusch. Modular properties of composable term rewriting systems. Journal of Symbolic Computation, 20(1):1–42, 1995.
M. Schmidt-Schauß. Unification in a combination of arbitrary disjoint equational theories. Journal of Symbolic Computation, 8(1):51–99, 1989.
M. Schmidt-Schauß, M. Marchiori, and S. Panitz. Modular termination of rconsistent and left-linear term rewriting systems. Theoretical Computer Science, 149(2):361–374, 1995.
Y. Toyama. Counterexamples to termination for the direct sum of term rewriting systems. Information Processing Letters, 25:141–143, 1987.
Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting systems. Journal of the ACM, 34(1):128–143, 1987.
Y. Toyama, J. Klop, and H. Barendregt. Termination for direct sums of left-linear complete term rewriting systems. Journal of the ACM, 42(6):1275–1304, 1995.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gramlich, B. (1998). Modular aspects of rewrite-based specifications. In: Presicce, F.P. (eds) Recent Trends in Algebraic Development Techniques. WADT 1997. Lecture Notes in Computer Science, vol 1376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-64299-4_38
Download citation
DOI: https://doi.org/10.1007/3-540-64299-4_38
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64299-2
Online ISBN: 978-3-540-69719-0
eBook Packages: Springer Book Archive