Abstract
We state a simple condition on a rational subset X of a free monoid B* for the existence of a sequential function that is a one-to-one mapping of some free monoid A* onto X. As a by-product we obtain new sequential bijections of a free monoid onto another.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. Berstel and D. Perrin. Theory of Codes. Academic Press, 1985.
J. Berstel and C. Reutenauer. Rational Series and Their Languages, volume 12 of EATCS Monograph on Theoretical Computer Science. Academic Press, 1988.
C. Choffrut. Bijective sequential mappings of a free monoid onto another. RAIRO Informatique Théorique et Applications, 28:265–276, 1994.
S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press, 1974.
K. Hashiguchi. Algorithms for determining the number of non-terminals sufficient for generating a regular language. In B. Monien J. Leach Albert and M. Rodriguez Artalejo, editors, ICALP 91, number 510 in LNCS, pages 641–648. Springer Verlag, 1991.
H. A. Maurer and M. Nivat. Rational bijections of rational sets. Acta Informatica, 13:365–378, 1980.
R. Mac Naughton. A decision procedure for generalizd mappability-onto of regular sets. In STOC Conference, pages 206–218, 1971.
A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power Series. Springer, 1978.
K. B. Salomon. The decidability of a mapping problem for generalized sequential machines with final states. J. of Comput. and Sys. Sci., 10(2):200–218, 1975.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Prieur, C., Choffrut, C., Latteux, M. (1997). Constructing sequential bijections. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds) Structures in Logic and Computer Science. Lecture Notes in Computer Science, vol 1261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63246-8_19
Download citation
DOI: https://doi.org/10.1007/3-540-63246-8_19
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63246-7
Online ISBN: 978-3-540-69242-3
eBook Packages: Springer Book Archive