Constructing sequential bijections | SpringerLink
Skip to main content

Constructing sequential bijections

  • Formal Language Theory
  • Chapter
  • First Online:
Structures in Logic and Computer Science

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1261))

  • 124 Accesses

Abstract

We state a simple condition on a rational subset X of a free monoid B* for the existence of a sequential function that is a one-to-one mapping of some free monoid A* onto X. As a by-product we obtain new sequential bijections of a free monoid onto another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Berstel and D. Perrin. Theory of Codes. Academic Press, 1985.

    Google Scholar 

  2. J. Berstel and C. Reutenauer. Rational Series and Their Languages, volume 12 of EATCS Monograph on Theoretical Computer Science. Academic Press, 1988.

    Google Scholar 

  3. C. Choffrut. Bijective sequential mappings of a free monoid onto another. RAIRO Informatique Théorique et Applications, 28:265–276, 1994.

    Google Scholar 

  4. S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press, 1974.

    Google Scholar 

  5. K. Hashiguchi. Algorithms for determining the number of non-terminals sufficient for generating a regular language. In B. Monien J. Leach Albert and M. Rodriguez Artalejo, editors, ICALP 91, number 510 in LNCS, pages 641–648. Springer Verlag, 1991.

    Google Scholar 

  6. H. A. Maurer and M. Nivat. Rational bijections of rational sets. Acta Informatica, 13:365–378, 1980.

    Google Scholar 

  7. R. Mac Naughton. A decision procedure for generalizd mappability-onto of regular sets. In STOC Conference, pages 206–218, 1971.

    Google Scholar 

  8. A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power Series. Springer, 1978.

    Google Scholar 

  9. K. B. Salomon. The decidability of a mapping problem for generalized sequential machines with final states. J. of Comput. and Sys. Sci., 10(2):200–218, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jan Mycielski Grzegorz Rozenberg Arto Salomaa

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prieur, C., Choffrut, C., Latteux, M. (1997). Constructing sequential bijections. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds) Structures in Logic and Computer Science. Lecture Notes in Computer Science, vol 1261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63246-8_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-63246-8_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63246-7

  • Online ISBN: 978-3-540-69242-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics