The split weight (w L , w R ) enumeration of Reed-Muller codes for w L +w R <2d min | SpringerLink
Skip to main content

The split weight (w L , w R ) enumeration of Reed-Muller codes for w L +w R <2d min

  • Conference paper
  • First Online:
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1255))

  • 140 Accesses

Abstract

Formulas for the distributions of split weights (w L , w R ) of Reed-Muller codes are presented for w L +w r less than twice the minimum weight d min. A canonical form for all the relevant Boolean polynomials is derived. These results are applied to analyzing the structure and complexity of subtrellises of codewords of weights less than 2d min of Reed-Muller codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. Sugita, T. Kasami, and T. Fujiwara, “A Method for Computing Split Weight Distributions of Reed-Muller Codes,” Proc. of the International Symposium on Information Theory and Its Applications, pp.598–601, Victoria, Canada, Sep. 1996.

    Google Scholar 

  2. F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, Amsterdam, The Netherlands: North-Holland, 1977.

    Google Scholar 

  3. T. Kasami and N. Tokura, “On the Weight Structure of Reed-Muller Codes,” IEEE Trans. Information Theory, Vol. 16, No.6, pp. 752–759, Nov. 1970.

    Google Scholar 

  4. H.T. Moorthy, S. Lin and T. Kasami, “Soft-Decision Decoding of Binary Linear Block Codes Based on an Iterative Search Algorithm,” Proc. of IEEE International Symposium on Information Theory, p.474, Whistler, Canada, Sep. 1995, also to appear in IEEE Trans. Information Theory.

    Google Scholar 

  5. T. Koumoto, T. Takata, T. Kasami, and S. Lin, “An Iterative Soft-Decision Decoding Algorithm,” Proc. of the International Symposium on Information Theory and Its Applications, pp.806–810, Victoria, Canada, Sep. 1996.

    Google Scholar 

  6. G.D. Forney, Jr.,“Dimension/Length Profiles and Trellis Complexity of Linear Block Codes,” IEEE Trans. Information Theory, Vol. 40, No.6, pp. 1742–1752, Nov. 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Teo Mora Harold Mattson

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kasami, T., Sugita, T., Fujiwara, T. (1997). The split weight (w L , w R ) enumeration of Reed-Muller codes for w L +w R <2d min . In: Mora, T., Mattson, H. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1997. Lecture Notes in Computer Science, vol 1255. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63163-1_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-63163-1_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63163-7

  • Online ISBN: 978-3-540-69193-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics