Abstract
We introduce a qualitative model of uncertain reasoning and illustrate its application in the framework of a natural language understanding task. Considering uncertain reasoning as a preferential choice problem between alternative hypotheses, the model we provide assigns quality labels to single evidences for or against a hypothesis, combines the generated labels in terms of the overall credibility of a single hypothesis, and, finally, computes a preference order on the entire set of competing hypotheses. This model of quality-based uncertain reasoning is entirely embedded in a terminological logic framework.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
S. Buvač, V. Buvač, and I. Mason. Metamathematics of contexts. Fundamenta Informaticae, 23(3), 1995.
P. Cohen. Heuristic Reasoning about Uncertainty: An Artificial Intelligence Approach. Los Altos/CA: Morgan Kaufmann, 1985.
P. Cohen. The control of reasoning under uncertainty: a discussion of some programs. In G. Shafer and J. Pearl, editors, Readings in Uncertain Reasoning, pages 177–197. San Mateo/CA: Morgan Kaufmann, 1990.
J. Fox and P. Krause. Symbolic decision theory and autonomous systems. In B. D'Ambrosio, P. Smets, and P. Bonissone, editors, UAI'91 — Proc. 7th Conf. on Uncertainty in Artificial Intelligence, pages 103–110. San Mateo/CA: Morgan Kaufmann, 1991.
U. Hahn, M. Klenner, and K. Schnattinger. Learning from texts — a terminological metareasoning perspective. In S. Wermter, E. Riloff, and G. Scheler, editors, Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing, pages 453–468. Berlin: Springer, 1996.
U. Hahn, M. Klenner, and K. Schnattinger. A quality-based terminological reasoning model for text knowledge acquisition. In N. Shadbolt, K. O'Hara, and G. Schreiber, editors, EKAW'96 — Proc. 9th European Knowledge Acquisition Workshop, pages 131–146. Berlin: Springer, 1996.
U. Hahn, S. Schacht, and N. Bröker. Concurrent, object-oriented dependency parsing: the ParseTalk model. International Journal of Human-Computer Studies, 41(1–2): 179–222, 1994.
B. Heinsohn. Probabilistic description logics. In R. Lopez de Mantaras and D. Poole, editors, UAI'94 — Proc. 10th Conf. on Uncertainty in Artificial Intelligence, pages 311–318. San Mateo/CA: Morgan Kaufmann, 1994.
J. Hobbs, M. Stickel, D. Appelt, and P. Martin. Interpretation as abduction. Artificial Intelligence, 63(1–2):69–142, 1993.
B. Hollunder. An alternative proof method for possibilistic logic and its application to terminological logics. In R. Lopez de Mantaras and D. Poole, editors, UAI'94 — Proc. 10th Conf. on Uncertainty in Artificial Intelligence, pages 327–335. San Mateo/CA: Morgan Kaufmann, 1994.
M. Jaeger. Probabilistic reasoning in terminological logics. In J. Doyle, E. Sandewall, and P. Torasso, editors, KR'94 — Proc. 4th International Conf. on Principles of Knowledge Representation and Reasoning, pages 305–316. San Mateo/CA: Morgan Kaufmann, 1994.
M. Klenner and U. Hahn. Concept versioning: a methodology for tracking evolutionary concept drift in dynamic concept systems. In A. Cohn, editor, ECAI'94 — Proc. 11th European Conf. on Artificial Intelligence, pages 473–477. Chichester: J. Wiley, 1994.
P. Krause, S. Ambler, M. Elvang-Goransson, and J. Fox. A logic of argumentation for reasoning under uncertainty. Computational Intelligence, 11:113–131, 1995.
R. MacGregor. A description classifier for the predicate calculus. In AAAI'94 — Proc. 12th National Conf. on Artificial Intelligence. Vol. 1, pages 213–220. Menlo Park: AAAI Press/M.I.T. Press, 1994.
J. McCarthy. Notes on formalizing context. In IJCAI'93 — Proc. 13th International Joint Conf. on Artificial Intelligence. Vol. 1, pages 555–560. San Mateo/CA: Morgan Kaufmann, 1993.
P. Neuhaus and U. Hahn. Trading off completeness for efficiency: the ParseTalk performance grammar approach to real-world text parsing. In FLAIRS'96 — Proc. 9th Florida Artificial Intelligence Research Symposium, pages 60–65. Florida AI Research Society, 1996.
D. Pacholczyk. Qualitative reasoning under uncertainty. In C. Pinto-Ferreira and N. Mamede, editors, Progress in Artificial Intelligence. EPIA '95 — Proc. 7th Portuguese Conf. on Artificial Intelligence, pages 297–309. Berlin: Springer, 1995.
J. Quantz. Interpretation as exception minimization. In IJCAI'93 — Proc. 13th International Joint Conf. on Artificial Intelligence. Vol. 2, pages 1310–1315. San Mateo/CA: Morgan Kaufmann, 1993.
K. Schnattinger, U. Hahn, and M. Klenner. Quality-based terminological reasoning for concept learning. In I. Wachsmuth, C.-R. Rollinger, and W. Brauer, editors, Advances in Artificial Intelligence. KI'95 — Proc. 19th Annual German Conf. on Artificial Intelligence, pages 113–124. Berlin: Springer, 1995.
K. Schnattinger, U. Hahn, and M. Klenner. Terminological meta-reasoning by reification and multiple contexts. In C. Pinto-Ferreira and N. Mamede, editors, Progress in Artificial Intelligence. EPIA'95 — Proc. 7th Portuguese Conf. on Artificíal Intelligence, pages 1–16. Berlin: Springer, 1995.
G. Shafer and J. Pearl, editors. Readings in Uncertain Reasoning. San Mateo/CA: Morgan Kaufmann, 1990.
W. Woods and J. Schmolze. The KL-ONE family. Computers & Mathematics with Applications, 23(2–5): 133–177, 1992.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schnattinger, K., Hahn, U. (1996). A terminological qualification calculus for preferential reasoning under uncertainty. In: Görz, G., Hölldobler, S. (eds) KI-96: Advances in Artificial Intelligence. KI 1996. Lecture Notes in Computer Science, vol 1137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61708-6_76
Download citation
DOI: https://doi.org/10.1007/3-540-61708-6_76
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61708-2
Online ISBN: 978-3-540-70669-4
eBook Packages: Springer Book Archive