Graph automata for linear graph languages | SpringerLink
Skip to main content

Graph automata for linear graph languages

  • Graph Languages
  • Conference paper
  • First Online:
Graph Grammars and Their Application to Computer Science (Graph Grammars 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1073))

Abstract

We introduce graph automata as devices for the recognition of linear graph languages. A graph automaton is the canonical extension of a finite state automaton recognizing a set of connected labeled graphs. It consists of a finite state control and a collection of heads, which search the input graph. In a move the graph automaton reads a new subgraph, checks some consistency conditions, changes states and moves some of its heads beyond the read subgraph. It proceeds such that the set of currently visited edges is an edge-separator between the visited and the yet undiscovered part of the input graph. Hence, the graph automaton realizes a graph searching strategy. Our main result states that finite graph automata recognize exactly the set of graph languages generated by connected linear NCE graph grammars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Bienstock, P. Seymour. Monotonicity in graph searching. J. Algorithms 12 (1991), 239–245.

    Google Scholar 

  2. F.J. Brandenburg. Designing graph drawings by layout graph grammars. Proc. Workshop on Graph Drawing 94, LNCS 894 (1995), 416–427.

    Google Scholar 

  3. B. Courcelle. Graph rewriting: an algebraic and logic approach. Handbook of Theoretical Computer Science, Elsevier, Amsterdam, (1990) 193–242.

    Google Scholar 

  4. H. Ehrig, H.J. Kreowski, G. Rozenberg. Proc. 4. Workshop on Graph Grammars and Their Application to Computer Science, LNCS 532 (1991).

    Google Scholar 

  5. J. Engelfriet. Context-free NCE graph grammars. Proc. FCT 89, LNCS 380 (1989), 148–161.

    Google Scholar 

  6. J. Engelfriet, G. Leih. Linear graph grammars: power and complexity. Inform. Com-put. 81 (1989), 88–121.

    Google Scholar 

  7. F. Gécseg, M. Steinby. Tree Automata. Akadémiai Kiadó, Budapest (1984).

    Google Scholar 

  8. T. Hickl. Rechtwinkliges Layout von hierarchisch strukturierten Graphen. Dissertation, Universität Passau (1994).

    Google Scholar 

  9. D. Janssens, G. Rozenberg, E. Welzl. The bounded degree problem for NLC graph grammars is decidable. J. Comput. System Sci. 33 (1986), 415–422.

    Google Scholar 

  10. M. Kaul. Practical applications of precedence graph grammars. Proc. 3. Workshop on Graph Grammars and their Application to Computer Science, LNCS 291 (1987), 326–342.

    Google Scholar 

  11. A.S. LaPaugh. Recontamination does not help to search a graph. J. Assoc. Comput. Mach. 40 (1993), 224–245.

    Google Scholar 

  12. N. Megiddo, S.L. Hakimi, M. R. Garey, D.S. Johnson, C.H. Papadimitriou. The complexity of searching a graph. J. Assoc. Comput. Mach. 35 (1988), 18–44.

    Google Scholar 

  13. M. Nagl. Graph Grammatiken. Vieweg, Braunschweig (1979).

    Google Scholar 

  14. J.L. Pfaltz, A. Rosenfeld. Web Grammars. Proc. Joint Intern. Conference on Artificial Intelligence, Washington, D.C., (1969), 609–619.

    Google Scholar 

  15. E. Remila. Fundamental study — Recognition of graphs by automata. Theor. Comput. Sci. 136 (1994), 291–332.

    Google Scholar 

  16. A. Rosenfeld, D.L. Milgram. Web automata and web grammars. Machine Intelligence 7 (1972), 307–324.

    Google Scholar 

  17. G. Rozenberg, E. Welzl. Boundary NLC graph grammars-Basic definitions, normal forms and complexity. Inform. Control 69 (1986), 136–167.

    Google Scholar 

  18. A. Wu, R. Rosenfeld. Cellular graph automata I. Inform. Control 42 (1979), 305–329.

    Google Scholar 

  19. A. Wu, R. Rosenfeld. Cellular graph automata II. Inform. Control 42 (1979), 330–353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Janice Cuny Hartmut Ehrig Gregor Engels Grzegorz Rozenberg

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brandenburg, F.J., Skodinis, K. (1996). Graph automata for linear graph languages. In: Cuny, J., Ehrig, H., Engels, G., Rozenberg, G. (eds) Graph Grammars and Their Application to Computer Science. Graph Grammars 1994. Lecture Notes in Computer Science, vol 1073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61228-9_97

Download citation

  • DOI: https://doi.org/10.1007/3-540-61228-9_97

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61228-5

  • Online ISBN: 978-3-540-68388-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics