Abstract
We investigate concurrency as unifying computational paradigm which integrates functional, constraint, and object-oriented programming. We propose the ρ-calculus as a uniform foundation of concurrent computation and formally relate it to other models: The ρ calculus with equational constraints provides for logic variables and is bisimilar to the γ-calculus. The ρ-calculus without constraints is a proper subset of the π-calculus. We prove its Turing completeness by embedding the eager λ-calculus in continuation passing style. The ρ-calculus over an arbitrary constraint system is an extension of the standard cc-model with procedural abstraction.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gul Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems. The MIT Press, Cambridge, MA, 1986.
Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. A call-by-need lambda calculus. In Proc. POPL, pp. 233–246. ACM Press, 1995.
G. Boudol. Asynchrony and the π-calculus (note). Rapport de Recherche 1702, INRIA, Sophia Antipolis, France, May 1992.
S. Brook and G. Ostheimer. Process semantics of graph reduction. In Proc. CONCUR, pp. 238–252, August 1995.
F. S. de Boer and C. Palamidessi. A process algebra of concurrent constraint programming. In Krzysztof Apt, ed., Proc. JICSLP, pp. 463–477, Cambridge, Massachusetts, 1992. The MIT Press.
M. Falaschi, M. Gabbrielli, and C. Palamidessi. Compositional analysis for concurrent constraint programming. In Proc. LICS, pp. 210–220. IEEE Computer Society Press, June 1993.
M. Henz, G. Smolka, and J. Würtz. Object-Oriented Concurrent Constraint Programming in Oz. In V. Saraswat and P. Van Hentenryck, eds., Principles and Practice of Constraint Programming, chapter 2, pp. 27–48. The MIT Press, Cambridge, MA, Cambridge, MA, 1995.
K. Honda and N. Yoshida. On Reduction-Based Semantics. In R. K. Shyamasundar, ed., Proc. FST-TCS, Bombay, India, December 1993.
Sverker Janson. AKL — A Multiparadigm Programming Language. PhD thesis, SICS Swedish Institute of Computer Science, SICS Box 1263, S-164 28 Kista, Sweden, 1994. SICS Dissertation Series 14.
J. W. Klop. Term Rewriting Systems. In S. Abramsky, D. M. Gabbay, and T. S. M. Maibaum, eds., Handbook of Logic in Computer Science, volume 2, chapter 2, pp. 2–116. Oxford University Press, 1992.
M. Mehl, R. Scheidhauer, and C. Schulte. An Abstract Machine for Oz. In Proc. PLILP, LNCS. Utrecht, NL, 9/20-22/95. Springer, Berlin, Germany. To appear.
R. Milner. The polyadic π-calculus: A tutorial. In F. L. Bauer, W. Brauer, and H. Schwichtenberg, eds., Proc. 1991 Marktoberndorf Summer School on Logic and Algebra of Specification. NATO ASI Series, Springer, Berlin, Germany, 1993.
R. Milner. Functions as Processes. Mathematical Structures in Computer Science, 2(2):119–141, 1992.
R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I and II. Information and Computation, 100(1):1–40 and 41–77, September 1992.
T. Müller, Konstantin Popow, C. Schulte, and J. Würtz. Constraint programming in Oz. DFKI Oz documentation series, DFKI Saarbrücken, Germany, 1994. Documentation and System: http://ps@www.dfki.uni-sb.de.
J. Niehren. Funktionale Berechnung in einem uniform nebenläufigen Kalkül mit logischen Variablen. Doctoral Dissertation. Universität des Saarlandes, Technische Fakultät, 66041 Saarbrücken, Germany, December 1994. In German.
J. Niehren. Functional computation as concurrent computation, 1995. Submitted, http://ps-www.dfki.uni-sb.de/∼niehren.
Joachim Niehren and Martin Müller. Constraints for Free in Concurrent Computation. Research Report, German Research Center for Artificial Intelligence (DFKI), Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany, September 1995.
J. Niehren and G. Smolka. A confluent relational calculus for higher-order programming with constraints. In J.-P. Jouannaud, ed., Proc. CCL, LNCS 845, pp. 89–104, Germany, 1994.
G. D. Plotkin. Call-by-name, Call-by-value and the λ-Calculus. Theoretical Computer Science, 1:125–159, 1975.
V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concurrent constraint programming. In Proc. POPL, pp. 333–352. ACM Press, 1991.
G. Smolka. A Calculus for Higher-Order Concurrent Constraint Programming with Deep Guards. Research Report RR-94-03, DFKI, Saarbrücken, Germany, 1994.
G. Smolka. A Foundation for Concurrent Constraint Programming. In J.-P. Jouannaud, ed., Proc. CCL, LNCS 845, pp. 50–72, Germany, 1994.
G. Smolka. An Oz primer. DFKI Oz documentation series, DFKI, Saarbrücken, Germany, 1995. Documentation and System: http://ps-www.dfki.uni-sb.de.
G. Smolka. The Definition of Kernel Oz. In Andreas Podelski, ed., Constraints: Basics and Trends, LNCS 910, pp. 251–292. Springer, Berlin, Germany, 1995.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Niehren, J., Müller, M. (1995). Constraints for free in concurrent computation. In: Kanchanasut, K., Lévy, JJ. (eds) Algorithms, Concurrency and Knowledge. ACSC 1995. Lecture Notes in Computer Science, vol 1023. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60688-2_43
Download citation
DOI: https://doi.org/10.1007/3-540-60688-2_43
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60688-8
Online ISBN: 978-3-540-49262-7
eBook Packages: Springer Book Archive