Quality-based terminological reasoning for concept learning | SpringerLink
Skip to main content

Quality-based terminological reasoning for concept learning

  • Logic and Reasoning
  • Conference paper
  • First Online:
KI-95: Advances in Artificial Intelligence (KI 1995)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 981))

Included in the following conference series:

Abstract

We introduce a qualitative methodology for concept learning from texts that relies upon second-order reasoning about statements expressed in a (first-order) terminological representation language. This meta-reasoning approach allows for quality-based evaluation and selection among alternative concept hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alshawi, H. (1987). Processing dictionary definitions with phrasal pattern hierarchies. Computational Linguistics, 13(3–4):195–202.

    Google Scholar 

  • Buchheit, M., Donini, F., & Schärf, A. (1993). Decidable reasoning in terminological knowledge representation systems. Journal of Artificial Intelligence Research, 1:109–138.

    Google Scholar 

  • Buvač, S., Buvač, V., & Mason, I. (1995). Metamathematics of contexts. Fundamenta Informaticae, 23(3).

    Google Scholar 

  • Clark, P. (1988). Representing arguments as background knowledge for constraining generalisation. In EWSL'88 — Proc. 3rd European Working Session on Learning, pages 37–44.

    Google Scholar 

  • Cohen, W. & Hirsh, H. (1994). The learnability of description logics with equality constraints. Machine Learning, 17:169–199.

    Google Scholar 

  • Friedman, D. & Wand, M. (1984). Reification: reflection without metaphysics. In Proc. 1984 ACM Symposium on Lisp and Functional Programming, pages 348–355.

    Google Scholar 

  • Hahn, U., Klenner, M., & Schnattinger, K. (1995). Learning from texts: a terminological meta-reasoning perspective. In Proc. IJCAI'95 Workshop on New Approaches to Learning for Natural Language Processing. Also distributed via http://www.coling.uni-freiburg.de/public/papers/ijcai95.ps.

    Google Scholar 

  • Hahn, U., Schacht, S., & Bröker, N. (1994). Concurrent, object-oriented dependency parsing: the ParseTalk model. International journal of Human-Computer Studies, 41(1/2):179–222.

    Google Scholar 

  • Hastings, P. & Lytinen, S. (1994). The ups and downs of lexical acquisition. In AAAI'94 — Proc. 12th National Conf. on Artificial Intelligence, pages 754–759.

    Google Scholar 

  • Kietz, J.-U. & Morik, K. (1994). A polynomial approach to the constructive induction of structural knowledge. Machine Learning, 14:193–217.

    Google Scholar 

  • MacGregor, R. (1993). Representing reified relations in LOOM. Journal of Experimental and Theoretical Artificial Intelligence, 5:179–183.

    Google Scholar 

  • MacGregor, R. (1994). A description classifier for the predicate calculus. In AAAI'94 — Proc. 12th National Conf. on Artificial Intelligence, pages 213–220.

    Google Scholar 

  • McCarthy, J. (1993). Notes on formalizing context. In IJCAI'93 — Proc. 13th Intl. Joint Conf. on Artificial Intelligence, pages 555–560.

    Google Scholar 

  • Mooney, R. (1987). Integrated learning of words and their underlying concepts. In Proc. 9th Annual Conf. of the Cognitive Science Society, pages 974–978.

    Google Scholar 

  • Schnattinger, K., Hahn, U., & Klenner, M. (1995). Terminological meta-reasoning by reification and multiple contexts. In EPIA '95 — Proc. 7th Portuguese Conf. on Artificial Intelligence. Also distributed via http://www.coling.uni-freiburg.de /public/papers/epia95.ps.

    Google Scholar 

  • Slator, B. (1989). Extracting lexical knowledge from dictionary text. Knowledge Acquisition, 1:89–112.

    Google Scholar 

  • Velardi, P., Pazienza, M., & Fasolo, M. (1991). How to encode semantic knowledge: a method for meaning representation and computer-aided acquisition. Computational Linguistics, 17(2):153–170.

    Google Scholar 

  • Wilensky, R. (1993). Knowledge acquisition and natural language processing. In S. Chipman & A.L. Meyrowitz (Eds.), Foundations of knowledge acquisition: cognitive models of complex learning, pages 309–336, Boston. Kluwer.

    Google Scholar 

  • Zernik, U. (1989). Lexicon acquisition: learning from corpus by capitalizing on lexical categories. In IJCAI'89 — Proc. 11th Intl. Joint Conf. on Artificial Intelligence, pages 1556–1562.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ipke Wachsmuth Claus-Rainer Rollinger Wilfried Brauer

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schnattinger, K., Hahn, U., Klenner, M. (1995). Quality-based terminological reasoning for concept learning. In: Wachsmuth, I., Rollinger, CR., Brauer, W. (eds) KI-95: Advances in Artificial Intelligence. KI 1995. Lecture Notes in Computer Science, vol 981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60343-3_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-60343-3_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60343-6

  • Online ISBN: 978-3-540-44944-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics