Abstract
Simulations were developed in the framework of the network theory of respiratory rhythmogenesis. The main goals were: (i) to develop computational models of neural mechanisms that provide the genesis and control of both respiratory oscillations and specific patterns of respiratory neurons, and (ii) to test some hypotheses about the neural mechanisms of respiratory rhythmogenesis on the basis of an analysis of these models. Our specific objectives were to understand the mechanisms of integration and specific roles of intrinsic properties of respiratory neurons, network properties of their interconnections, and effects of afferent feedback in the genesis and control of the respiratory pattern. The models of single respiratory neurons were developed in the Hodgkin-Huxley style. The single neuron models produce the specific firing patterns of respiratory neurons recorded experimentally (i.e. adapting and ramping bursts). Different model versions of the respiratory rhythm generator have been considered. They consist of interconnected neurons and vagal feedback from lung stretch receptors. The models demonstrate a stable respiratory rhythm and specific patterns of respiratory neuronal discharges. The performances of the models are compared and analyzed in light of existing hypotheses and physiological data.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
S. N. Botros & E. M. Bruce. (1990) Neural network implementation of the three-phase model of respiratory rhythm generation. Biol. Cybern. 63: 143–153.
G. W. Bradley (1986) The effect of CO2, body temperature and anesthesia on the response to vagal stimulation. In B. Duron (Ed.) Respiratory Centers and Afferent Systems, 139–154. Paris: INSERM
T. H. Bryant, S. Yoshida, D. de Castro & J. Lipski (1993) Expiratory neurons of the Botzinger complex in the rat: A morphological study following intracellular labeling with biocytin. J. Comp. Neurology. 335: 267–282.
M. I. Cohen & J. L. Feldman (1977) Models of respiratory phase-switching Federation Proc. 36: 2367–2374
J. Champagnat, T. Jacquin & D. W. Richter. (1986) Voltage-dependent currents in neurons of the nuclei of the solitary tract of rat brainstem slices. Pflugers Arch. 406: 372–379.
J. Champagnat & D. W. Richter. (1994) The Roles of K+ conductance in expiratory pattern generation in anaesthetized cats. J. Physiol. 479: 127–138.
J. Champagnat, D. W. Richter, T Jacquin & M. Denavit-Saubie. (1986) Voltage-dependent conductances in neurons of the ventrolateral NTS in rat brainstem slices. In C. von Euler & H. Langercrantz (Eds.) Neurobiology of the Control of Breathing, 217–221. New York: Raven.
M. S. Dekin & P. A. Getting. (1987) In vitro characterization of neurons in the ventral part of the nucleus tractus solitarius. II. Ionic basis for repetitive firing patterns. J. Neuroplysiol. 58: 215–229.
J. Duffin. (1991) Amodel of respuatory rhythm generation. Neuroreport 2: 623–626.
C. von Euler (1986) Brainstein mechanism for generation and control of breathing pattern. In Handbook of physiology. The respiratory system II (N. S. Cheraack & J. G. Widdicombe Eds.), 1–67. Washington: Am. Physiol. Soc.
J. L. Feldman (1986) Neurophysiology of breathing in mammals. In Handbook of physiology. Section 1. vol. 4.(F. E. Bloom ed.), 463–524. Bethesda, MD: Am. Physiol. Soc.
S. Geman & M. Miller (1976) Computer simulation of brainstem respiratory activity. J. Appl. Physiol. 41: 931–938.
A. Gottshalk, M. D. Ogilvie, D. W. Richter & A. I. Pack (1994) Computational aspects of the respiratory pattern generator. Neural Comput. 6: 56–68.
L. Grelot, A. L. Bianchi, S. Iscoe & J. E. Remmers. (1988) Expiratory neurones of the rostral medulla: anatomical and functional correlates. Neurosci. Lett. 89: 140–145.
J. R. Huguendard & D. A. McCormick (1992) Simulation of the currents involved in rhythm oscillations in thalamic relay neurons. J. Neurophysiol. 68: 1373–1383.
J. R. Hugueudard & D. A. McCormick. Vclamp and Cclamp. A Computational Simulation of Single thalamic relay and cortical pyramidal neurons. Neural Simulation Instruction Manual.
S. Klages, M. C. Bellingham, & D. W. Richter (1993) Late expiratory inhibition of stage 2 expiratory neurons in the cat — A correlate of expiratory termination. J. Physiol. 70: 1307–1315.
C. K. Knox (1973) Characteristics of inflation and deflation reflexes during expiration in the cat J. Physiol. 36: 284–295.
E. E. Lawson, D. W. Richter, D. Ballantyne & A. Kuhner (1989) Peripheral chemoreceptor inputs to medullary inspiratory and postinspiratory neurons of cats. Phlugers Arch. 414: 523–533.
D. A. McCormick & J. R. Huguenard (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J. Neurophysiol. 68: 1384–1400.
S. Mifflin, D. Ballantyne, S. Backman & D. W. Richter. (1985) Evidence for a calcium-activated potassium conductance in medullary respiratory neurons. In A. Bianchi & M. Denvait-Saubie (Eds.) Nemgenesis of Central Respiratory Rhythm, 179–182. Lancaster, UK: MTP.
M. D. Ogilvie, A. Gottschalk, K. Anders, D. W. Richter & A. I. Pack. (1992) A network model of respiratory rhythmogenesis. Am. J. Physiol. 263: R962–R975.
J. E. Remmers, D. W. Richter, D. Ballantyne, C. R. Bainton & J. P. Klein (1986) Reflex prolongation of stage I of expiration. Phlugers Arch. 407: 190–198.
D. W. Richter & D. Ballantyne. (1983) A three phase theory about the basic respiratory pattern generator. In M. Schlafke, H. Koepchen & W. See (Eds.) Central Neurone Environment, 164–174. Berlin: Springer.
D. W. Richter, D. Ballantyne & J. E. Remmers. (1986) How is the respiratory rhythm generated? A model. Naws Physiol. Sci. 1: 109–112.
D. W. Richter, J. Champagnat, T. Jaquim & R. Benacka (1993) Calcium currents and calcium-dependent potassium currents in mammalian medullary respiratory neurons. J. Physiol. 470: 23–33.
D. W. Richter, J. Champagnat & S. W. Mifflin. (1986) Membrane properties involved in respiratory rhythm generation. In C. von Euler & H. Langercrantz (Eds.) Neurobiology of the Control of Breathing, 141–147. New York: Raven.
D. W. Richter, F. Heyde & M. Gabriel. (1975) Intracellular recordings from different types of medullary respiratory neurons of the cat J. Neuropliysiol. 38: 1162–1171.
J. E. Rubio (1972) A new mathematical model of the respiratory center. Bull. Math. Biophys. 34: 486–481.
M. Sammon, J. R. Romaniuk & E. N. Bruce (1993) Bifurcations of the respiratory pattern produced with phasic vagal stimulation in the rat. J. Appl. Physiol, 75: 912–936.
S. W. Schwarzacher, J. S. Smith & D. W. Richter. (1991) Respiratory neurons in the pre-Botzinger region of cats (Abstract) EurJ. Physiol. 418, Suppl. 1: R17.
W. M. Yamada, C. Koch & P. B. Adams (1989) Multiple cannel and calcium dynamics. In C. Koch & I. Segev (Eds.) Methods in Neuronal Modeling, 97–133. Cambridge: MIT.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rybak, I.A., Paton, J.F.R., Schwaber, J.S. (1995). Modeling and analysis of some neural mechanisms for the genesis and control of respiratory pattern. In: Mira, J., Sandoval, F. (eds) From Natural to Artificial Neural Computation. IWANN 1995. Lecture Notes in Computer Science, vol 930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59497-3_162
Download citation
DOI: https://doi.org/10.1007/3-540-59497-3_162
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-59497-0
Online ISBN: 978-3-540-49288-7
eBook Packages: Springer Book Archive