Recent developments in hybrid CG methods | SpringerLink
Skip to main content

Recent developments in hybrid CG methods

  • Numerical Algorithms for Engineering
  • Conference paper
  • First Online:
High-Performance Computing and Networking (HPCN-Europe 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 797))

Included in the following conference series:

Abstract

In many relevant large scale computations one has to solve very large linear nonsymmetric systems. Often there is no alternative but to solve these systems by some iterative solution method. In the past few years new methods have emerged that can be seen as combinations of standard Krylov subspace methods, such as Bi-CG and GMRES. One of the first hybrid schemes of this type is CGS, actually the Bi-CG squared method. Other such hybrid schemes include BiCGSTAB (a combination of Bi-CG and GMRES(1)), BiCGSTAB(ℓ) (Bi-CG combined with GMRES(ℓ)), and the nested GMRESR method (GMRES preconditioned by itself or other schemes). These methods have been successful in solving relevant sparse nonsymmetric linear systems.

After a presentation of some recent methods we will discuss briefly implementation issues of the Krylov subspace methods, including possibilities for distributed parallel computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. O. Axelsson and P. S. Vassilevski, A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning, SIAM J. Matrix Anal. Appl., 12(4):625–644, 1991.

    Google Scholar 

  2. R. Bank and T. F. Chan, A composite step Bi-Conjugate Gradient algorithm for nonsymmetric linear systems, to appear.

    Google Scholar 

  3. R. Barrett, M. Berry, T. Chan, J. Demmel, J. Dunato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1993.

    Google Scholar 

  4. G. C. Crone and H. A. van der Vorst, Communication aspects of the Conjugate Gradient method on distributed memory machines, submitted to Supercomputer.

    Google Scholar 

  5. E. de Sturler and D. R. Fokkema, Nested Krylov methods and preserving the orthogonality, Technical Report Preprint 796, Utrecht University, Utrecht, 1993.

    Google Scholar 

  6. E. de Sturler and H. A. van der Vorst, Reducing the effect of global communication in GMRES(m) and CG on parallel distributed memory computers, Technical Report Preprint 832, Utrecht University, Utrecht, 1993.

    Google Scholar 

  7. J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst, Solving linear systems on vector and shared memory computers, SIAM, Philadelphia, 1991.

    Google Scholar 

  8. I. S. Duff, R. G. Grimes, and J. G. Lewis, Sparse Matrix Test Problems, ACM Trans. on Math. Softw., 15:1–14, 1989.

    Google Scholar 

  9. S. C. Eisenstat, H. C. Elman, and M. H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 20:345–357, 1983.

    Google Scholar 

  10. R. Fletcher, Conjugate gradient methods for indefinite systems, volume 506 of Lecture Notes Math., pages 73–89, Springer-Verlag, Berlin-Heidelberg-New York, 1976.

    Google Scholar 

  11. R. W. Freund and N. M. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian linear systems, Num. Math., 60:315–339, 1991.

    Google Scholar 

  12. M. H. Gutknecht, Variants of BICGSTAB for matrices with complex spectrum, SIAM J. Sci. Comput., 14:1020–1033, 1993.

    MathSciNet  Google Scholar 

  13. C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res. Natl. Bur. Stand, 49:33–53, 1952.

    Google Scholar 

  14. Claude Pommerell, Solution of large unsymmetric systems of linear equations, PhD thesis, Swiss Federal Institute of Technology, Zürich, 1992.

    Google Scholar 

  15. Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14:461–469, 1993.

    MathSciNet  Google Scholar 

  16. Y. Saad and M. H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7:856–869, 1986.

    Google Scholar 

  17. G. L. G. Sleijpen and D. R. Fokkema, Bi-CGSTAB(ℓ) for linear equations involving unsymmetric matrices with complex spectrum, ETNA, 1:11–32, 1993.

    Google Scholar 

  18. G. L. G. Sleijpen, D. R. Fokkema and H. A. van der Vorst, BiCGstab(ℓ) and other hybrid Bi-CG methods, to appear in Numerical Algorithms.

    Google Scholar 

  19. P. Sonneveld, CGS: a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 10:36–52, 1989.

    Google Scholar 

  20. A. van der Sluis and H. A. van der Vorst, SIRT-and CG-type methods for the iterative solution of sparse linear least-squares problems, Lin. Alg. and its Appl., 130:257–302, 1990.

    Google Scholar 

  21. H. A. van der Vorst, The convergence behaviour of preconditioned CG and CG-S in the presence of rounding errors, In: O. Axelsson and L. Yu. Kolotilina, editors, Preconditioned Conjugate Gradient Methods, Berlin, 1990. Springer Verlag. Lecture Notes in Mathematics 1457.

    Google Scholar 

  22. H. A. van der Vorst, Conjugate gradient type methods for nonsymmetric linear systems, In: R. Beauwens and P. de Groen, editors, Iterative Methods in Linear Algebra, Amsterdam, 1992, North-Holland.

    Google Scholar 

  23. H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems, SIAM J. Sci. Statist. Comput., 13:631–644, 1992.

    Google Scholar 

  24. H. A. van der Vorst and C. Vuik, GMRESR: A family of nested GMRES methods, Technical Report 91-80, Delft University of Technology, Faculty of Tech. Math., 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Gentzsch Uwe Harms

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Van der Vorst, H.A. (1994). Recent developments in hybrid CG methods. In: Gentzsch, W., Harms, U. (eds) High-Performance Computing and Networking. HPCN-Europe 1994. Lecture Notes in Computer Science, vol 797. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57981-8_113

Download citation

  • DOI: https://doi.org/10.1007/3-540-57981-8_113

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57981-6

  • Online ISBN: 978-3-540-48408-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics