Abstract
We show: There is no tree language whose syntactic semigroup lies in Kr, or in LI unless it is in K. Instead, reverse (resp. general) definite tree languages have syntactic semigroups in Kr V J1 (resp. LI v J1). We give concise combinatorial descriptions of the tree languages whose syntactic semigroups are in Kr v J 1 (resp. LI v J 1), in terms of the properties reverse (resp. general) J 1-definite. These properties are more general than the properties reverse (general) definite as defined by Heuter. Finally we show that they are decidable.
Supported by an NSERC postdoctoral fellowship.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
S. Eilenberg, Automata, Languages and Machines, Vol. B, Academic Press, 1976.
F. Gécsec, M. Steinby. Tree Automata. (Akademiai Kiado, Budapest, 1984).
U. Heuter, Definite tree languages, Bulletin of the EATCS 35, 1988, 137–142.
U. Heuter, Generalized definite tree languages, Proc. 14th MFCS, Lecture Notes in Computer Science 379, Springer, 1989, 270–280.
U. Heuter, Zur Klassifizierung reguläler Baumsprachen. Dissertation, University of Aachen (1989), Aachen, FRG.
M. Nivat and A. Podelski, Tree monoids and recognizable sets of trees, in H. Aït-Kaci and M. Nivat eds., Resolution of Equations in Algebraic Structures, Vol. 1, Academic Press, 1989.
N. Nivat and A. Podelski, Definite tree languages (cont'd), Bulletin of the EATCS 38, 1989, 186–190.
A. Podelski, Monoïdes d'Arbres et Automates d'Arbres, Thèse de Doctorat, Université Paris 7, 1989.
J. E. Pin, Variétés de langages formels, Masson, Paris, 1984, and Varieties of Formal Langages, Plenum, London, 1986.
M. Steinby, Syntactic algebras and varieties of recognizable sets, in Les arbres en algèbre et en programmation, 4ième Coll. Lille (Proc. Coll., Lille 1979) Université de Lille, 226–240.
M. Steinby, “A Theory of Tree Language Varieties,” in: Nivat, M., and Podelski, A., eds., Trees, Automata and Languages, Elsevier Publishers, 1991.
J.W. Thatcher, J.B. Wright, “Generalized Finite Automata Theory with an Application to a Decision Problem of Second Order Logic”, Math.Syst. Th. 2 (1968).
W. Thomas, On noncounting tree languages, Grundl. Theor. Informatik (Proc. 1. Intern. Workshop, Paderborn 1982), 234–242.
W. Thomas, Logical aspects in the study of tree languages, Proc. Ninth Coll. on Trees in Algebra and in Programming, Cambrige Univ. Press, 1984, 31–49.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1992 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Péladeau, P., Podelski, A. (1992). On reverse and general definite tree languages. In: Kuich, W. (eds) Automata, Languages and Programming. ICALP 1992. Lecture Notes in Computer Science, vol 623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55719-9_71
Download citation
DOI: https://doi.org/10.1007/3-540-55719-9_71
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-55719-7
Online ISBN: 978-3-540-47278-0
eBook Packages: Springer Book Archive