Decomposition of domains | SpringerLink
Skip to main content

Decomposition of domains

  • Conference paper
  • First Online:
Mathematical Foundations of Programming Semantics (MFPS 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 598))

Abstract

The problem of decomposing domains into sensible factors is addressed and solved for the case of dI-domains. A decomposition theorem is proved which allows the represention of a large subclass of dI-domains in a product of flat domains. Direct product decompositions of Scott-domains are studied separately.

L.Libkin was supported in part by NSF Grants IRI-86-10617 and CCR-90-57570 and ONR Grant NOOO14-88-K0634.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Abramsky. Domain Theory in Logical Form. Annals of Pure and Applied Logic, 51:1–77, 1991.

    Article  Google Scholar 

  2. R. Balbes and P. Dwinger. Distributive Lattices. University of Missouri Press, Columbia, 1974.

    Google Scholar 

  3. G. Berry. Modèles Complèment Adéquats et Stables des Lambda-calculs typés. Thèse de Doctorat d'Etat, Université Paris VII, 1979.

    Google Scholar 

  4. G. Berry. Stable Models of Typed λ-calculi. In Proceedings of the 5th International Colloquium on Automata, Languages and Programming, volume 62 of Lecture Notes in Computer Science, pages 72–89. Springer Verlag, 1978.

    Google Scholar 

  5. G. Birkhoff. Lattice Theory, volume 25 of AMS Colloq. Publ. American Mathematical Society, Providence, third edition, 1967.

    Google Scholar 

  6. P. Buneman, A. Jung, and A. Ohori. Using Powerdomains to Generalize Relational Databases. Theoretical Computer Science, 91:23–55, 1991.

    Article  Google Scholar 

  7. P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Programming. Pitman, 1986.

    Google Scholar 

  8. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott. A Compendium of Continuous Lattices. Springer Verlag, Berlin, 1980.

    Google Scholar 

  9. J.-Y. Girard. The System F of Variable Types: Fifteen Years Later. Theoretical Computer Science, 45:159–192, 1986.

    Google Scholar 

  10. G. Grätzer. General Lattice Theory. Birkhäuser Verlag, Basel, 1978.

    Google Scholar 

  11. G. Grätzer. The complete congruence lattice of a complete lattice. Proc. of Int. Conf. on Lattices, Semigroups, and Universal Algebra. Plenum Press, New York (1990), 81–88.

    Google Scholar 

  12. G. Grätzer and E. T. Schmidt. A representation of m-algebraic lattices. Algebra Universalis, to appear.

    Google Scholar 

  13. A. Jung. Cartesian Closed Categories of Domains, volume 66 of CWI Tracts. Centrum voor Wiskunde en Informatica, Amsterdam, 1989.

    Google Scholar 

  14. G. Kahn and G. Plotkin. Domaines Concrets. Technical Report 336, INRIA-Laboria, 1978.

    Google Scholar 

  15. A. Kanda. Fully Effective Solutions of Recursive Domain Equations. In J. BeÇvar, editor, Mathematical Foundations of Computer Science, volume 74. Springer-Verlag, 1979. Lecture Notes in Computer Science.

    Google Scholar 

  16. K. G. Larsen and G. Winskel. Using Information Systems to Solve Recursive Domain Equations Effectively. In G. Kahn, D. B. MacQueen, and G. Plotkin, editors, Semantics of Data Types, volume 173 of Lecture Notes in Computer Science, pages 109–130. Springer-Verlag, 1984.

    Google Scholar 

  17. L. Libkin. A relational algebra for complex objects based on partial information. In: J. Demetrovics and B. Thalheim, editors, Mathematical Fundamentals of Database Systems — 91, volume 495 of Lecture Notes in Computer Science, pages 36–41. Springer-Verlag, 1991.

    Google Scholar 

  18. G. D. Plotkin. Post-Graduate Lecture Notes in Advanced Domain Theory (incorporating the “Pisa Notes”). Dept. of Computer Science, Univ. of Edinburgh, 1981.

    Google Scholar 

  19. H. Puhlmann. Verallgemeinerung relationaler Schemata in Datenbanken mit Informationsordnung, 1990. (Diplomarbeit, Technische Hochschule Darmstadt.).

    Google Scholar 

  20. M. B. Smyth. Effectively Given Domains. Theoretical Computer Science, 5:257–274, 1977.

    Article  Google Scholar 

  21. P. Taylor. Homomorphisms, Bilimits and Saturated Domains. Some Very Basic Domain Theory. Draft, Imperial College London, 15pp., 1987.

    Google Scholar 

  22. K. Weihrauch and T. Deil. Berechenbarkeit auf cpo's. Technical Report 63, Rheinisch-Westfälische Technische Hochschule Aachen, 1980.

    Google Scholar 

  23. G. Winskel. Events in Computation. PhD thesis, University of Edinburgh, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stephen Brookes Michael Main Austin Melton Michael Mislove David Schmidt

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jung, A., Libkin, L., Puhlmann, H. (1992). Decomposition of domains. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds) Mathematical Foundations of Programming Semantics. MFPS 1991. Lecture Notes in Computer Science, vol 598. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55511-0_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-55511-0_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55511-7

  • Online ISBN: 978-3-540-47194-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics