Abstract timed observation and process algebra | SpringerLink
Skip to main content

Abstract timed observation and process algebra

  • Selected Presentations
  • Conference paper
  • First Online:
CONCUR '91 (CONCUR 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 527))

Included in the following conference series:

Abstract

In this paper, we investigate the notion of observation in a partially ordered time domain. We present an algebraic structure to represent such an observation, and use it to define a process algebra. It is then given an operational and denotational semantics, and we see that denotational equivalence is the same as may testing.

Copyright © 1991 Alan Jeffrey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. C. M. Baeten and J. A. Bergstra. Real space process algebra. Technical Report P9005, Programming Research Group, University of Amsterdam, 1990.

    Google Scholar 

  2. J. C. M. Baeten and J. A. Bergstra. Asynchronous communication in real space process algebra. In Proc. Chalmers Workshop on Concurrency. Department of Computer Sciences, Chalmers University, 1991.

    Google Scholar 

  3. J. C. M. Baeten and J. A. Bergstra. Real time process algebra. Formal Aspects of Computing, 3:142–188, 1991.

    Google Scholar 

  4. S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential processes. JACM, 31(3):560–599, July 1984.

    Google Scholar 

  5. J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstraction. Theoretical Computer Science, 37:77–121, 1985.

    Google Scholar 

  6. J. C. M. Baeten and W. P. Weijland. Process Algebra, volume 18 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1990.

    Google Scholar 

  7. Jim Davies and Steve Schneider. An introduction to timed CSP. Technical monograph PRG-75, Oxford University Computing Laboratory, 1989.

    Google Scholar 

  8. Jay L. Gischer. The equational theory of pomsets. Theoretical Computer Science, 61:199–224, 1988.

    Google Scholar 

  9. M. Hennessy. Algebraic Theory of Processes. The MIT Press, 1988.

    Google Scholar 

  10. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

    Google Scholar 

  11. M. Hennessy and T. Regan. A temporal process algebra. Technical Report 2/90, University of Sussex, Computer Science Department, 1990.

    Google Scholar 

  12. Alan Jeffrey. An algebraic structure for timed observation. In Proc. Chalmers Workshop on Concurrency. Department of Computer Sciences, Chalmers University, 1991.

    Google Scholar 

  13. Alan Jeffrey. Discrete timed CSP. PMG Memo 79, Department of Computer Sciences, Chalmers University, 1991.

    Google Scholar 

  14. Alan Jeffrey. A linear time process algebra. To be presented at CAV 91, 1991.

    Google Scholar 

  15. Robin Milner. A Calculus of Communicating Systems. Springer-Verlag, 1980. LNCS 92.

    Google Scholar 

  16. Robin Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, pages 267–310, 1983.

    Google Scholar 

  17. Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

    Google Scholar 

  18. F. Moller and C. Tofts. A temporal calculus of communicating systems. In Proc. Concur 90, pages 401–415. Springer-Verlag, 1990. LNCS 458.

    Google Scholar 

  19. David Murphy. The physics of observation: A perspective for concurrency theorists. Submitted to the Bulletin of the EATCS, 1991.

    Google Scholar 

  20. David Murphy. Testing, betting and true concurrency. To be presented at Concur 91, 1991.

    Google Scholar 

  21. X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and application. Technical Report RT-C26, Laboratoire de Génie Informatique de Grenoble, 1990.

    Google Scholar 

  22. George M. Reed. A Uniform Mathematical Theory for Real-time Distributed Computing. D.Phil thesis, Oxford University, 1988.

    Google Scholar 

  23. G. M. Reed and A. W. Roscoe. A timed model for communicating sequential processes. In Proc. ICALP 86, pages 314–323. Springer-Verlag, 1986, LNCS 226.

    Google Scholar 

  24. Steve Schneider. An operational semantics for timed CSP. In Proc. Chalmers Workshop on Concurrency, 1991.

    Google Scholar 

  25. Wang Yi. Real-time behaviour of asynchronous agents. In Proc. Concur 90, pages 502–520. Springer-Verlag, 1990. LNCS 458.

    Google Scholar 

  26. Wang Yi. CCS + time = an interleaving model for real time systems. To be presented at ICALP 91, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jos C. M. Baeten Jan Frisco Groote

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jeffrey, A. (1991). Abstract timed observation and process algebra. In: Baeten, J.C.M., Groote, J.F. (eds) CONCUR '91. CONCUR 1991. Lecture Notes in Computer Science, vol 527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54430-5_98

Download citation

  • DOI: https://doi.org/10.1007/3-540-54430-5_98

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54430-2

  • Online ISBN: 978-3-540-38357-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics