Abstract
We extend the real time process algebra of [BB91] to real space-time process algebra, where actions are not just parametrized by a time coordinate, but also by three spatial coordinates. We describe two versions: classical space-time, where all equations are invariant under Galilei transformations, and relativistic space-time, where all equations are invariant under Lorentz transformations. The latter case in turn splits into two subcases: the temporal interleaving model and the true concurrency model.
Note: Partial support received by ESPRIT basic research action 3006, CONCUR, and by RACE contract 1046, SPECS. This document does not necessarily reflect the views of the SPECS consortium.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J.C.M. Baeten & J.A. Bergstra, Real time process algebra, Formal Aspects of Computing 3 (2), 1991, pp. 142–188 (original version: report P8916, Programming Research Group, University of Amsterdam 1989).
J.C.M. Baeten & J.A. Bergstra, Process algebra with a zero object, in: Proc. CONCUR 90, Amsterdam (J.C.M. Baeten & J.W. Klop, eds.), Springer LNCS 458, 1990, pp. 83–98.
J.C.M. Baeten & W.P. Weijland, Process algebra, Cambridge Tracts in TCS 18, Cambridge University Press 1990.
J.A. Bergstra & J.W. Klop, Process algebra for synchronous communication, Inf. & Control 60, 1984, pp. 109–137.
J.A. Bergstra & J.W. Klop, Algebra of communicating processes with abstraction, TCS 37, 1985, pp. 77–121.
J.A. Bergstra & J.W. Klop, Process algebra: specification and verification in bisimulation semantics, in: Math. & Comp. Sci. II (M. Hazewinkel, J.K. Lenstra & L.G.L.T. Meertens, eds.), CWI Monograph 4, North-Holland, Amsterdam 1986, pp. 61–94.
M. Born, Die Relativitätstheorie Einsteins, Springer Verlag 1921.
[He88] M. Hennessy, Algebraic theory of processes, MIT Press 1988.
C.A.R. Hoare, Sequential communicating processes, Prentice Hall, 1985.
A.S. Klusener, Completeness in real time process algebra, report CS-R9106, CWI Amsterdam 1991. Extended abstract in this volume.
R. Milner, A calculus of communicating systems, Springer LNCS 92, 1980.
R. Milner, Communication and concurrency, Prentice Hall, 1989.
G. Peackock, A treatise of algebra, Cambridge 1830.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baeten, J.C.M., Bergstra, J.A. (1991). Real space process algebra. In: Baeten, J.C.M., Groote, J.F. (eds) CONCUR '91. CONCUR 1991. Lecture Notes in Computer Science, vol 527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54430-5_83
Download citation
DOI: https://doi.org/10.1007/3-540-54430-5_83
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-54430-2
Online ISBN: 978-3-540-38357-4
eBook Packages: Springer Book Archive