Type inference in polymorphic type discipline | SpringerLink
Skip to main content

Type inference in polymorphic type discipline

  • Conference paper
  • First Online:
Theoretical Aspects of Computer Software (TACS 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 526))

Included in the following conference series:

Abstract

A hierarchy of type assignment systems is defined, which is a complete stratification of the polymorphic type assignment system. For each of such systems a type inference algorithm is given.

Work partially supported by EEC "Project Stimulation ST2J/0374/C(EDB): Lambda Calcul Type".

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barendregt, H.P., The Lambda Calculus: its Syntax and Semantics. North Holland, 1984 (revised version).

    Google Scholar 

  2. Ben-Yelles, C., Type Assignment in the Lambda-Calculus: Syntax and Semantics. Ph. D. Thesis, University College of Swansea, 1979.

    Google Scholar 

  3. Bosio, E., Ronchi Della Rocca, S., Type Synthesis for Intersection Type Discipline. Prooceedings of Third Italian Conference on Theoretical Computer Science. Word Scientific, 1989, pp.109–122.

    Google Scholar 

  4. Coppo, M., Tipi e polimorfismo nei linguaggi di programmazione, Atti degli Incontri di Logica Matematica, Siena, 1985.

    Google Scholar 

  5. Curry, H.B., Modified Basic Functionality in Combinatory Logic. Dialectica, 1969.

    Google Scholar 

  6. Damas, L. and Milner, R., The Principal Type Schemes for Functional Programs. In Symposium on Principles of Programming Languages, ACM, 1982, pp.207–212.

    Google Scholar 

  7. Giannini, P.,Honsell, F., Ronchi Della Rocca, S., A strongly normalizing term having no type in the system F (second order λ-calculus), Rapporto Interno, Dipartimento di Informatica, Torino, 1987.

    Google Scholar 

  8. Giannini, P., Ronchi Della Rocca, S., Characterization of typings in polymorphic type discipline. In Logic in Computer Science, IEEE, 1988, pp. 61–70.

    Google Scholar 

  9. Giannini, P., Ronchi Della Rocca, S., Message on the Type-Net, November 1989.

    Google Scholar 

  10. Girard, J.Y., Interpretation Fonctionelle et Elimination des Coupures de l'Arithmetique dOrdre Superieur. These D'Etat, Universite Paris VII, 1972.

    Google Scholar 

  11. Hindley, R., The Principal Type Scheme of an Object in Combinatory Logic. Transactions of American Mathematical Society, 1969, pp. 1–17.

    Google Scholar 

  12. Kfoury, A.J., Tiuryn J., Urzyczyn P., The Undecidability of Semiunification Problem. Tec. Report, Computer Science Dept., Boston University, 1989.

    Google Scholar 

  13. Le Chenadec P., On the Logic of Unification. Journal of Symbolic Computation, 8, 1/2, 1989, pp. 141–199.

    Google Scholar 

  14. Leivant, D., Polymorphic Type Inference. In Symposium on Principles of Programming Languages, ACM, 1983, pp.88–98.

    Google Scholar 

  15. Mitchell, J.C., Polymorphic Type Inference and Containment. Information and Computation 76, 2/3, 1988, pp.211–249.

    Article  Google Scholar 

  16. Pfenning, F., Partial Polymorphic Type Inference and Higher-Order Unification. In Conference on LISP and Functional Programming, ACM, 1988.

    Google Scholar 

  17. Prawitz, D., Natural Deduction, a Proof Theoretic Study. Almquist and Wiksell, Amsterdam, 1965.

    Google Scholar 

  18. Reynolds, J.C., Towards a Theory of Type Structures. In Paris Colloquium on Programming, Springer Verlag, 1974, pp.408–425.

    Google Scholar 

  19. Robinson, J.A., A Machine Oriented Logic Based on the Resolution Principle. Journal of the ACM, 1965, pp.24–41.

    Google Scholar 

  20. Ronchi Della Rocca, S., Principal Type Scheme and Unification for Intersection Type Discipline. Theoretical Computer Science 59, 1988, pp.181–209.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Takayasu Ito Albert R. Meyer

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giannini, P., Ronchi, S., Rocca, D. (1991). Type inference in polymorphic type discipline. In: Ito, T., Meyer, A.R. (eds) Theoretical Aspects of Computer Software. TACS 1991. Lecture Notes in Computer Science, vol 526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54415-1_39

Download citation

  • DOI: https://doi.org/10.1007/3-540-54415-1_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54415-9

  • Online ISBN: 978-3-540-47617-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics