Abstract
We consider the following problem:
Instance: a finite alphabet A, a biprefix code X={x,y} whose elements are primitive, weA*.
Question: find every maximal factors of w which are prefixes of a word of X*.
We present an algorithm which solves the problem in time linear of the length of w, after a preprocessing phase applied to the set X.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aho A and M. Corasick. Efficient String Matching: An Aid to Bibliographic Search, Comm. ACM 18:6 (June 1975), 333–340.
Barbin E. and M. Lerest. Sur la combinatoire des codes à deux mots, Theoret. Comput. Sci., 41 (1985) 61–80.
Berstel J., Perrin D., Perrot J.F. and A. Restivo. Sur le théorème du défaut, Journal of Algebra, Vol 60, No1, September 1979.
Crochemore M. Longest common factor of two words, in TAPSOFT' 87, Springer Lecture Notes in Comput. Sci., 249 (1987) 26–36.
Duval J.P. Périodes et répétitions des mots du monoïde libre. Theoret. Comput. Sci. 9 (1979) 17–26.
Garey M.and D. Johnson. Computers and intractability. A guide to the Theory of NP-Completeness, W. H. Freeman and Company, 1978.
Hirschberg D and L. Larmore. New Applications of Failure Functions, Journ. of Ass. for Comput. Mach., Vol 34, No3, (July 1987), 616–625.
Hopcroft J. and J. Ullman. Introduction to automata theory, languages and computation, Addison-Wesley publishing company, 1979.
Knuth D., Morris J. and V. Pratt. Fast pattern matching in strings. SIAM J. Comput. 6 (1977) 323–350.
Lentin A. Equations dans le monoïde libre. Pais: Gautier Villars, 1972.
Lerest E. and M.Lerest. Sur les relations entre un nombre fini de mots. Thèse Université de Rouen (France) 1979.
Lentin A. and M.P. Shützenberger. A combinatorial problem in the theory of free monoids, Proc. University of North California (1967) 128–144.
Néraud J. Elementariness of a finite set of words is co-NP-complete, to appear in RAIRO.
Néraud J. On the deficit of a finite set of words, to appear in Semigroup Forum.
Schützenberger M.P. A property of finitely generated submonoids, in: G. Pollak, ed., Algebraic Theory of Semigroups (North-Holland, Amsterdam, 1979) 545–576.
Tarhio J and E. Ukkonen. A greedy approximation algorithm for constructing shortest common superstrings, Theoret. Comput. Sci., 57 (1988) 131–145.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1990 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Crochemore, M., Neraud, J. (1990). Unitary monoid with two generators: An algorithmic point of view. In: Arnold, A. (eds) CAAP '90. CAAP 1990. Lecture Notes in Computer Science, vol 431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52590-4_44
Download citation
DOI: https://doi.org/10.1007/3-540-52590-4_44
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-52590-5
Online ISBN: 978-3-540-47042-7
eBook Packages: Springer Book Archive