Abstract
In a previous paper (see [7]) we found that given a distance regular e-latticed graph γ we can associate with it a completely regular code C. We used this in order to solve a conjecture given by Bannai in [1].
In the present paper we introduce the propelinear code structure with the aim of studying the algebraic structure of completely regular codes (not necessarily linear) associated with distance-regular e-latticed graphs.
We give the basic properties of this structure. We construct, from a propelinear code C, an associate graph Ω(C) and we prove that C is a completely regular code if and only if Ω(C) is a distance-regular graph.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
E. BANNAI & T. ITO, "Algebraic Combinatorics I". The Benjamin-Cummings Publishing Co., Inc. California. (1984).
P. DELSARTE, "An algebraic approach to the association schemes of coding theory". Philips Research Reps. Suppl. 10. (1973).
G. ETIENNE, "Perfect Codes and Regular Partition in Graphs and Groups". Europ. J. of Comb, 8, pp. 139–144 (1987).
D.G. HIGMAN, "Coherent Configuration I Ordinary Representation Theory". Geom. Dedic. 4, pp. 1–32 (1975).
J.RIFÀ, "Equivalències entre estructures combinatòricament regulars: Codis, Esquemes i grafs". Tesi doctoral. Univ. Autònoma de Barcelona. (1987).
J.RIFÀ & L. HUGUET, "Characterization of Completely Regular Codes through P-Polynomial Association Schemes". Springer-Verlag, LNCS, n. 307, 157–167, (1988).
J. RIFÀ & L. HUGUET, Classification of a Class of Distance-Regular Graphs via Completely Regular Codes. Proceed. CO87. Southampton 1987. To appear in Discrete Maths.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1989 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rifà, J., Basart, J.M., Huguet, L. (1989). On completely regular propelinear codes. In: Mora, T. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1988. Lecture Notes in Computer Science, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51083-4_71
Download citation
DOI: https://doi.org/10.1007/3-540-51083-4_71
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-51083-3
Online ISBN: 978-3-540-46152-4
eBook Packages: Springer Book Archive