Abstract
It is shown that the fixed binary (2,1,m) convolutional codes satisfy the Costello bound if two conjectures on the weight distribution of binary shortened cyclic codes are true.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
D. Costello, Jr., Free distance bounds for convolutional codes, IEEE Trans. Inform. Theory, 20, pp. 356–365, 1974.
G.D. Forney, Structural analysis of convolutional codes via dual codes, IEEE Trans. Inform. Theory, 19, pp. 512–518, 1973.
F.J. MacWilliams and N.J.A. Sloane, The Theory of Error Correcting Codes, North-Holland Publishing Company, Amsterdam, 1977.
W.W. Peterson and E.J. Weldon, Error correcting codes, 2nd ed., MIT Press, 1972.
Ph. Piret, On the number of divisors of a polynomial over GF(2), Applied Algebra, Algorithmics and Error-Correcting Codes, edited by A. Poli, Lecture Notes in Computer Science, 228, Springer-Verlag 1984.
W.J. Rosenberg, Structural properties of convolutional codes, Ph.D. Thesis, Univ. of California, Los Angeles, 1971.
Zigangirov, New asymptotic lower bounds on the free distance for time-constant convolutional codes, Problems of Inform. Transm., 22, pp.104–111, 1986.
G.D. Forney, Convolutional codes I: Algebraic structure, IEEE Trans. Inform. Theory, 16, pp. 720–738, 1970.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1989 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Piret, P. (1989). A conjecture on the free distance of (2,1,m) binary convolutional codes. In: Huguet, L., Poli, A. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1987. Lecture Notes in Computer Science, vol 356. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51082-6_93
Download citation
DOI: https://doi.org/10.1007/3-540-51082-6_93
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-51082-6
Online ISBN: 978-3-540-46150-0
eBook Packages: Springer Book Archive