The Inapproximability of Non NP-hard Optimization Problems | SpringerLink
Skip to main content

The Inapproximability of Non NP-hard Optimization Problems

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1533))

Included in the following conference series:

  • 588 Accesses

Abstract

The inapproximability of non NP-hard optimization problems is investigated. Based on self-reducibility and approximation preserving reductions, it is shown that problems Log Dominating Set, Tournament Dominating Set and Rich Hypergraph Vertex Cover cannot be approximated to a constant ratio in polynomial time unless the corresponding NP-hard versions are also approximable in deterministic subexponential time. A direct connection is established between non NP-hard problems and a PCP characterization of NP. Reductions from the PCP characterization show that Log Clique is not approximable in polynomial time and Max Sparse SAT does not have a PTAS under the assumption that SAT cannot be solved in deterministic \( 2^{O(log n \sqrt n )} \)time and that NP \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \not\subset } \) DTIME\( (2^{O(n)} ) \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arora, S.: Personal Communication.

    Google Scholar 

  2. Arora, S., Lund, C.: Hardness of Approximations. In Approximation Algorithms for NP-hard problems. Ed. Dorit Hochbaum. (1997).

    Google Scholar 

  3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Verification and hardness of approximation problems. Proc. 33rd Ann. IEEE Symp. on Foundations of Computer Science. (1992) 14–23.

    Google Scholar 

  4. Arora, S., Safra, S.: Probabilistic Checking of Proofs. Proceedings of the 33rd IEEE Annual Symposium on Foundations of Computer Science. (1992) 2–13.

    Google Scholar 

  5. Buss, J. F., Goldsmith, J.: Nondeterminism within P. SIAM Journal on Computing. 22 (1993) 560–572.

    Article  MATH  MathSciNet  Google Scholar 

  6. Bellare, M., Goldwasser, S., Lund, C., Russell, A.: Efficient probabilistic checking of proofs and applications to approximation. Proceedings of the 25th Annual ACM Symposium on the Theory of Computing (1993) 113–131.

    Google Scholar 

  7. Cai, L., Chen, J.: On the amount of nondeterminism and the power of verifying. SIAM Journal on Computing. 26 (1997) 733–750

    Article  MATH  MathSciNet  Google Scholar 

  8. Cai, L., Chen, J.: On Fixed-Parameter Tractability and Approximability of NP Optimization Problems. Journal of Computer and System Sciences. 54 (1997) 465–474.

    Article  MATH  MathSciNet  Google Scholar 

  9. Cai, L., Chen, J., Downey, R., Fellows, M.: On the Structure of Parameterized Problems in NP. Information and Computation. 123 (1995) 38–49.

    Article  MATH  MathSciNet  Google Scholar 

  10. Díaz, J., Torán, J.: Classes of bounded nondeterminism. Math. System Theory. 23 (1990) 21–32.

    Article  MATH  Google Scholar 

  11. Downey, R., Fellows, M.: Fixed-Parameter Intractability. Proceedings of the 7th IEEE Annual Conference on Structure in Complexity Theory. (1992) 36–49.

    Google Scholar 

  12. Downey, R., Fellows, M.: Fixed-Parameter Tractability and Completeness I: Basic Results. SIAM Journal on Computing. 24 (1995) 873–921.

    Article  MATH  MathSciNet  Google Scholar 

  13. Downey, R., Fellows, M.: Parameterized Computational Feasibility. The Proceedings of FEASMATH: Feasible Mathematics: A Mathematical Sciences Institute Workshop (1995).

    Google Scholar 

  14. Farr, G.: On problems with short certificates. Acta Informatica. 31 (1994) 479–502.

    Article  MATH  MathSciNet  Google Scholar 

  15. Feige, U.: A Threshold of ln n for Approximating Set Cover. Proceedings of The 28th Annual ACM Symposium On The Theory Of Computing. (1996) 314–318.

    Google Scholar 

  16. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy M.: Approximating clique is almost NP-complete. Proceedings of the 32nd IEEE Symposium on the Foundations of Computer Science. (1991) 2–12.

    Google Scholar 

  17. Feige, U., Kilian, J.: On Limited versus Polynomial Nondeterminism. CJTCS: Chicago Journal of Theoretical Computer Science. (1997).

    Google Scholar 

  18. Fotakis, D., Spirakis, P.: (poly(loglogn), poly(loglogn))-Restricted Verifiers are Unlikely to exist for languages in NP. Proceedings of the 23nd International Symposium on Mathematical Foundations of Computer Science. (1996) 360–371.

    Google Scholar 

  19. Goldsmith J., Levy, M., Mundhenk, M.: Limited Nondeterminism. SIGACT News. 27 (1996) 20–29.

    Article  Google Scholar 

  20. Johnson, D. S.: The NP-Completeness Column: Ongoing Guide. Journal of Algorithms. 13 (1992) 502–524.

    Article  MATH  MathSciNet  Google Scholar 

  21. Kann, V.: On the Approximability of NP-complete Optimization Problems. Royal Institute of Technology, Sweden. Ph.D. Thesis (1992).

    Google Scholar 

  22. Megiddo, N., Vishkin, U.: On Finding a Minimum Dominating Set in a Tournament. Theoretical Computer Science. 61 (1988) 307–316.

    Article  MathSciNet  MATH  Google Scholar 

  23. Papadimitriou C. H., Yannakakis M.: On Limited Nondeterminism and the Complexity of the V-C Dimension. Proceedings of the 8th Annual Conference on Structure in Complexity Theory. (1993) 12–18.

    Google Scholar 

  24. Pippenger, N., Fischer, M. J.: Relations Among Complexity Measures. Journal of the ACM. 26 (1979) 361–381.

    Article  MATH  MathSciNet  Google Scholar 

  25. Polishchuk, A., Spielman, D. A.: Nearly-linear Size Holographic Proofs. Proceedings of the 26th Annual ACM Symposium on the Theory of Computing. (1994) 194–203.

    Google Scholar 

  26. Szelepcsényi, R.: β k-complete problems and greediness. Computer Science Department, University, Rochester, New York. Technical Report 445 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cai, L., Juedes, D., Kanj, I. (1998). The Inapproximability of Non NP-hard Optimization Problems. In: Chwa, KY., Ibarra, O.H. (eds) Algorithms and Computation. ISAAC 1998. Lecture Notes in Computer Science, vol 1533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49381-6_46

Download citation

  • DOI: https://doi.org/10.1007/3-540-49381-6_46

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65385-1

  • Online ISBN: 978-3-540-49381-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics