Abstract
We give an algorithm computing the branchwidth of interval graphs in time O(n 3 log n). This method generalizes to permutation graphs and, more generaly, to trapezoid graphs. In contrast, we show that computing branchwidth is NP-complete for splitgraphs and bipartite graphs.
The first author acknowledges support of DIMATIA Charles University, where he held a visiting position in 1997/8.
The second author acknowledges partial support of Czech Research grants GAČR. 201/1996/0194 and GAUK 1996/194.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bodlaender, H. and D. M. Thilikos, Constructive linear time algorithms for branch-width, Proceedings ICALP’97, Springer-Verlag, LNCS 1256, (1997), pp. 627–637.
Booth, K. and G. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity testing using PQ-tree algorithms, J. of Computer and System Sciences 13, (1976), pp. 335–379.
Garey, M.R. and D. S. Johnson, Computers and intractability, a guide to the theory of NP-completeness, Freeman, San Francisco 1979.
Kloks, T., Treewidth-Computations and Approximations, Springer-Verlag, LNCS 842, 1994.
Robertson, N. and P.D. Seymour, Graph minors X: Obstructions to tree-decomposition, Journal of Combinatorial Theory, Series B 52, (1991), pp. 153–190.
Seymour, P.D. and R. Thomas, Call routing and the ratcatcher, Combinatorica 14, (1994), pp. 217–241.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kloks, T., Kratochvíl, J., Müller, H. (1999). New Branchwidth Territories. In: Meinel, C., Tison, S. (eds) STACS 99. STACS 1999. Lecture Notes in Computer Science, vol 1563. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49116-3_16
Download citation
DOI: https://doi.org/10.1007/3-540-49116-3_16
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65691-3
Online ISBN: 978-3-540-49116-3
eBook Packages: Springer Book Archive