Abstract
Fuzzy controller generating procedures when using crisp input-output data produce the necessary system in two steps: first they produce a starting rule set and then they tune the parameters that influence the approximation with a learning algorithm. Other solutions work under special conditions as hybrid neuro-fuzzy systems improving the approximation with a gradient based learning algorithm (e.g. in the case of monotonous membership functions), or use the methods of the genetic algorithms to generate the fuzzy controller. This article demonstrates a new method which reduces the problem to a classification task and carries out the generation of the rules and the tuning of the system in a single step.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Borgulya, I.: A Ranking Method for Multiple Criteria Decision Making. International Journal of Systems Science 28, (1997) 905–912
Borgulya, I.: Két fuzzy osztályozó módszer. Szigma XXIX. (1998) No. 1–2. 7–28
Chin T.C., Qi X.M.: Genetic algorithms for learning the rule base of fuzzy logic controller. Fuzzy Sets and Systems 97. (1998) 1–7
Cho K.B., Wang B.H.: Radial basis function based adaptive fuzzy systems and their applications to system identification and predection. Fuzzy Sets and Systems 83, (1996) 325–339
Cordón O., Herrera F.: A Hybrid Genetic Algorithm-Evolution Strategy Process for Learning Fuzzy Logic Controller Knowledge Bases In: F. Herrera, L.J. Verdegay (eds): Genetic Algorithms and Soft Computing. Physica-Verlag, Heidelberg (1996) 250–278
Fullér R.: Egy fuzzy-neurális megközelítés a keresztárfolyamoktól függő portfóliók kiértékelésére. XXIII. Magyar Operációkutatási Konferencia Pécs. (1997)
Geyer-Schulz A.: Fuzzy genetic programming and dynamic decision making Proc. ICSE’96 (1996) 155–172
Halgamuge S.K., Glesner M.: Neural networks in designed fuzzy systems for real world applications. Fuzzy Sets and Systems 65, (1994) 1–12
Höppner F., Klawonn F., Kruse R.: Fuzzy-Clusteranalyse. Vieweg, Braunschweig /Wiesbaden (1997)
Hornik K., Stinchgombe M.: Multilayer Feedforward Networks Are Universal Approximators. In: White H.: Artificial Neural Network. Approximation and Learning Theory. Blackwell Pub. Cambridge (1992) 12–28
Kosko B.: Neural Networks and Fuzzy Systems. Englewood Cliffs, NJ. Prentice Hall (1992)
E.S. Lee, Q. Zhu: Fuzzy and evidence Reasoning. Physica-Verlag Heidelberg (1995)
Mitra S., Pal S.K.: Fuzzy multi-layer perceptron inferencing and rule generation. IEEE Trans. Neural Networks 6, (1995) 51–63
Munda G.: Multicriteria Evaluation in a Fuzzy Environment. Physica-Verlag Heidelberg (1995)
Shimojima K., Kubota N., Fukuda T.: Virus-Evolutionary Algorithm for Fuzzy Controller Optimization. In: F. Herrera, L.J. Verdegay (eds): Genetic Algorithms and Soft Computing. Physica Verlag Heidelberg (1996) 367–388
Sugeno M., Yakusawa T.: A fuzzy logic-based approach to qualitative modeling. IEEE Trans. On Fuzzy Systems, Vol. 1. (1993)
Wang L.X., Mendel J.M.: “Back-propagation fuzzy system as nonlinear dynamic system Identifiers”. Proc. First IEEE International Conference on Fuzzy Systems, (1992) 1409–1416
Wang L.X.: Universal approximation by hierarchical fuzzy systems. Fuzzy Sets and Systems. 93, (1998) 223–230
Zhang J., Knoll A., Le K.V.: A New Type of Fuzzy Logic System for Adaptive Modelling and Control. In: Reusch (ed): Computation Intelligence. Springer Berlin (1997) 363–380
Yager R.R.: Fuzzy Decision Making Including Unequal Objectives. Fuzzy Sets and Systems. 1, (1978) 87–95
Yager R.R., Filev D.: Generation of Fuzzy Rules by Mountain Clustering. Journal of Intelligent & Fuzzy systems, Vol. 2, (1994) No. 3, 209–219
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Borgulya, I. (1999). Fuzzy Controller Generation with a Fuzzy Classification Method. In: Reusch, B. (eds) Computational Intelligence. Fuzzy Days 1999. Lecture Notes in Computer Science, vol 1625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48774-3_9
Download citation
DOI: https://doi.org/10.1007/3-540-48774-3_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66050-7
Online ISBN: 978-3-540-48774-6
eBook Packages: Springer Book Archive