Fuzzy Controller Generation with a Fuzzy Classification Method | SpringerLink
Skip to main content

Fuzzy Controller Generation with a Fuzzy Classification Method

  • Conference paper
Computational Intelligence (Fuzzy Days 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1625))

Included in the following conference series:

  • 739 Accesses

Abstract

Fuzzy controller generating procedures when using crisp input-output data produce the necessary system in two steps: first they produce a starting rule set and then they tune the parameters that influence the approximation with a learning algorithm. Other solutions work under special conditions as hybrid neuro-fuzzy systems improving the approximation with a gradient based learning algorithm (e.g. in the case of monotonous membership functions), or use the methods of the genetic algorithms to generate the fuzzy controller. This article demonstrates a new method which reduces the problem to a classification task and carries out the generation of the rules and the tuning of the system in a single step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Borgulya, I.: A Ranking Method for Multiple Criteria Decision Making. International Journal of Systems Science 28, (1997) 905–912

    Article  MATH  Google Scholar 

  2. Borgulya, I.: Két fuzzy osztályozó módszer. Szigma XXIX. (1998) No. 1–2. 7–28

    Google Scholar 

  3. Chin T.C., Qi X.M.: Genetic algorithms for learning the rule base of fuzzy logic controller. Fuzzy Sets and Systems 97. (1998) 1–7

    Article  Google Scholar 

  4. Cho K.B., Wang B.H.: Radial basis function based adaptive fuzzy systems and their applications to system identification and predection. Fuzzy Sets and Systems 83, (1996) 325–339

    Article  MathSciNet  Google Scholar 

  5. Cordón O., Herrera F.: A Hybrid Genetic Algorithm-Evolution Strategy Process for Learning Fuzzy Logic Controller Knowledge Bases In: F. Herrera, L.J. Verdegay (eds): Genetic Algorithms and Soft Computing. Physica-Verlag, Heidelberg (1996) 250–278

    Google Scholar 

  6. Fullér R.: Egy fuzzy-neurális megközelítés a keresztárfolyamoktól függő portfóliók kiértékelésére. XXIII. Magyar Operációkutatási Konferencia Pécs. (1997)

    Google Scholar 

  7. Geyer-Schulz A.: Fuzzy genetic programming and dynamic decision making Proc. ICSE’96 (1996) 155–172

    Google Scholar 

  8. Halgamuge S.K., Glesner M.: Neural networks in designed fuzzy systems for real world applications. Fuzzy Sets and Systems 65, (1994) 1–12

    Article  Google Scholar 

  9. Höppner F., Klawonn F., Kruse R.: Fuzzy-Clusteranalyse. Vieweg, Braunschweig /Wiesbaden (1997)

    MATH  Google Scholar 

  10. Hornik K., Stinchgombe M.: Multilayer Feedforward Networks Are Universal Approximators. In: White H.: Artificial Neural Network. Approximation and Learning Theory. Blackwell Pub. Cambridge (1992) 12–28

    Google Scholar 

  11. Kosko B.: Neural Networks and Fuzzy Systems. Englewood Cliffs, NJ. Prentice Hall (1992)

    MATH  Google Scholar 

  12. E.S. Lee, Q. Zhu: Fuzzy and evidence Reasoning. Physica-Verlag Heidelberg (1995)

    Google Scholar 

  13. Mitra S., Pal S.K.: Fuzzy multi-layer perceptron inferencing and rule generation. IEEE Trans. Neural Networks 6, (1995) 51–63

    Article  Google Scholar 

  14. Munda G.: Multicriteria Evaluation in a Fuzzy Environment. Physica-Verlag Heidelberg (1995)

    Google Scholar 

  15. Shimojima K., Kubota N., Fukuda T.: Virus-Evolutionary Algorithm for Fuzzy Controller Optimization. In: F. Herrera, L.J. Verdegay (eds): Genetic Algorithms and Soft Computing. Physica Verlag Heidelberg (1996) 367–388

    Google Scholar 

  16. Sugeno M., Yakusawa T.: A fuzzy logic-based approach to qualitative modeling. IEEE Trans. On Fuzzy Systems, Vol. 1. (1993)

    Google Scholar 

  17. Wang L.X., Mendel J.M.: “Back-propagation fuzzy system as nonlinear dynamic system Identifiers”. Proc. First IEEE International Conference on Fuzzy Systems, (1992) 1409–1416

    Google Scholar 

  18. Wang L.X.: Universal approximation by hierarchical fuzzy systems. Fuzzy Sets and Systems. 93, (1998) 223–230

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhang J., Knoll A., Le K.V.: A New Type of Fuzzy Logic System for Adaptive Modelling and Control. In: Reusch (ed): Computation Intelligence. Springer Berlin (1997) 363–380

    Google Scholar 

  20. Yager R.R.: Fuzzy Decision Making Including Unequal Objectives. Fuzzy Sets and Systems. 1, (1978) 87–95

    Article  MATH  Google Scholar 

  21. Yager R.R., Filev D.: Generation of Fuzzy Rules by Mountain Clustering. Journal of Intelligent & Fuzzy systems, Vol. 2, (1994) No. 3, 209–219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Borgulya, I. (1999). Fuzzy Controller Generation with a Fuzzy Classification Method. In: Reusch, B. (eds) Computational Intelligence. Fuzzy Days 1999. Lecture Notes in Computer Science, vol 1625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48774-3_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-48774-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66050-7

  • Online ISBN: 978-3-540-48774-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics