Abstract
Drawing on an analogy with temporal fixpoint logic, we relate the arithmetic fixpoint definable sets to the winning positions of certain games, namely games whose winning conditions lie in the difference hierarchy over ∑ 02 . This both provides a simple characterization of the fixpoint hierarchy, and refines existing results on the power of the game quantifier in descriptive set theory.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
U. Bosse, An ‘Ehrenfeucht-Fraiïssé game’ for fixpoint logic and stratified fixpoint logic. Computer science logic, LNCS 702 (San Miniato, 1992) 100–114.
J. C. Bradfield, The modal mu-calculus alternation hierarchy is strict, Theor. Comput. Sci. 195 133–153 (1997).
J. R. Büchi, Using determinancy of games to eliminate quantifers, Proc. FCT’ 77, LNCS 56 367–378 (1977).
E. A. Emerson and C. S. Jutla, Tree automata, mu-calculus and determinacy, in: Proc. FOCS 91. (1991)
R. S. Lubarsky, μ-definable sets of integers, J. Symbolic Logic 58 (1993) 291–313.
Y. N. Moschovakis, Descriptive Set Theory (North-Holland, Amsterdam, 1980).
D. Niwiński, Fixed point characterization of infinite behavior of finite state systems. Theoret. Comput. Sci. 189 (1997) 1–69.
V. Selivanov, Fine hierarchy of regular ω-languages, Theoret. Comput. Sci. 191 (1998) 37–59.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bradfield, J.C. (1999). Fixpoint Alternation and the Game Quantifier. In: Flum, J., Rodriguez-Artalejo, M. (eds) Computer Science Logic. CSL 1999. Lecture Notes in Computer Science, vol 1683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48168-0_25
Download citation
DOI: https://doi.org/10.1007/3-540-48168-0_25
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66536-6
Online ISBN: 978-3-540-48168-3
eBook Packages: Springer Book Archive