Two Broadcasting Problems in FaultyHypercubes | SpringerLink
Skip to main content

Two Broadcasting Problems in FaultyHypercubes

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1665))

Included in the following conference series:

Abstract

We consider two broadcasting problems in the n-dimensional hypercube under the shouting communication mode, i.e. any node of a network can inform all its neighbours in one time step. In addition, during any time step a number of links of the network can be faulty. Moreover the faults are dynamic. The first problem is to find an upper bound on the number of time steps necessary to complete the broadcasting if at most n - 1 links are faulty in any step. Fraigniaud and Peyrat [10] proved that n+O(log n) time steps are sufficient. De Marco and Vaccaro [8] decreased the upper bound to n + 7 and showed a worst case lower bound n + 2 for n ≥ 3. We prove that n + 2 time steps are sufficient. The second problem from [8] is to find the maximal number k such that the broadcasting time remains n if at most k faults are allowed in any step. We prove that k equals either n-2 or n-3. Our method is related to the isoperimetric problem in graphs and can be applied to other networks.

Supported by the VEGA grant No. 1/4315/97.

Supported by the VEGA grant No. 95/5305/277.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bezrukov, S., Isoperimetric problems in discrete spaces, in: Extremal Problems for Finite Sets, (P. Frankl, Z. Füredi, G. Katona, D. Miklos, eds.), J. Bolyai Soc. Math. Studies, Akadïmia Kiadó, Budapest, 1994, 59–91. 174

    Google Scholar 

  2. Bollobás, B., Combinatorics, Chapter 16.: Isoperimetric Problems, Cambridge University Press, Cambridge, 1986, 123–130. 174

    Google Scholar 

  3. Bollobás, B., Leader, I., Compressions and isoperimetric inequalities, J. Combinatorial Theory A 56 (1991), 46–62.

    Google Scholar 

  4. Bollobás, B., Leader, I., An isoperimetric inequality on the discrete torus, SIAM J. on Discrete Mathematics 3 (1990), 32–37.

    Article  MATH  Google Scholar 

  5. Chlebus, B., Diks, K., Pelc, A., Broadcasting in synchronous networks with dynamic faults, Networks 27 (1996), 309–318. 174

    Article  MATH  MathSciNet  Google Scholar 

  6. Chung, F. R. K., Spectral Graph Theory, Chapter 2.: Isoperimetric Problems, Regional Conference Series in Mathematics Number 92, American Mathematical Society, Providence, RI, 1997. 174

    Google Scholar 

  7. F. R. K. Chung, Labelings of graphs, in: Graph Theory 3, (W. Beineke, R. Wilson, eds.), Academic Press, 1988, 152–167. 174

    Google Scholar 

  8. De Marco, G., Vaccaro, U., Broadcasting in hypercubes and star graphs with dynamic faults, Information Processing Letters 66 (1998), 321–326. 173, 174

    Article  MATH  MathSciNet  Google Scholar 

  9. Fraigniaud, P., Lazard, E., Methods and problems of communication in usual networks, Discrete Applied Mathematics 53 (1994), 79–133. 173

    Article  MATH  MathSciNet  Google Scholar 

  10. Fraigniaud, P., Peyrat, C., Broadcasting in a hypercube when some calls fail, Information Processing Letters 39 (1991), 115–119. 173, 177

    Article  MATH  MathSciNet  Google Scholar 

  11. Heath, L., Rosenberg, A., Graphs Separators, with Applications, 1999. 174

    Google Scholar 

  12. Hedetniemi, S.M., Hedetniemi, S.T., and Liestman, A., A survey of gossiping and broadcasting in communication networks, Networks 18 (1986), 319–349. 173

    Article  MathSciNet  Google Scholar 

  13. Hromkovic, J., Klasing, R., Monien, B., Paine, R., Dissemination of information in interconnection networks (broadcasting and gossiping), in: Combinatorial Network Theory, (Ding-Zhu Du, D. F. Hsu, eds.), Kluwer Academic Publishers, 1995, 125–212. 173

    Google Scholar 

  14. Katona, G.O.H., The Hamming-sphere has minimum boundary, Studia Scientarum Mathematicarum Hungarica 10 (1975), 131–140. 174

    MathSciNet  Google Scholar 

  15. Pelc, A., Fault tolerant broadcasting an gossiping in communication networks, Networks 26 (1996), 143–156. 173

    Article  MathSciNet  Google Scholar 

  16. Pólya, G., Szegö, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, 1951. 174

    Google Scholar 

  17. Santoro, N., Widmayer, P., Distributed function evaluation in the presence of transmission faults, in: Proc. Intl. Symposium on Algorithms, SIGAL’90, Lecture Notes in Computer Science 450, Springer Verlag, Berlin, 1990, 358–369. 173

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dobrev, S., Vrťo, I. (1999). Two Broadcasting Problems in FaultyHypercubes. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds) Graph-Theoretic Concepts in Computer Science. WG 1999. Lecture Notes in Computer Science, vol 1665. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46784-X_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-46784-X_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66731-5

  • Online ISBN: 978-3-540-46784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics