Abstract
This paper deals with the application of the Support Vector Method (SVM) methodology to the Auto Regressive and Moving Average (ARMA) linear-system identification problem. The SVM-ARMA algorithm for a single-input single-output transfer function is formulated. The relationship between the SVM coefficients and the residuals, together with the embedded estimation of the autocorrelation function, are presented. Also, the effect of the numerical regularization is used to highlight the robust cost character of this approach. A clinical example is presented for qualitative comparison with the classical Least Squares (LS) methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Proakis, J.G., Rader, C.M., Ling, F., Nikias, C.L.: Advanced Digital Signal Processing. Macmillan Publishing Company, NY, US, 1992.
Ljung, L.: System Identification. Theory for the User. Prentice Hall, NJ, US, 1987.
Vapnik, V.: The Nature of Statistical Learning Theory Springer-Verlag, NY, 1995.
Schölkopf, B., Sung, K.: Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers IEEE Trans. on Signal Proc. Vol 45, n 11. 1997.
Pontil, M., Verri, A.: Support Vector Machines for 3D Object Recognition. IEEE Trans. on Pattern Anal. and Mach. Intell. Vol. 20, n 6, 1998.
Müller, K.R., Smola, A., Rätsch, G.R., Schölkopf, B., Kohlmorgen, J., Vapnik, V.: Predicting Time Series with Support Vector Machines. In Advances in Kernel Methods. Support Vector Learning. MIT Press, MA, USA. 1999.
Tikhonov, A.N., Arsenen, V.Y.: Solution to Ill-Posed Problems. V.H. Winston & Sons. Washington, US, 1977.
Smola, A.J., Schölkopf, B.: A Tutorial on Support Vector Regression. NeuroCOLT2 NC2-TR-1998-030, 1998.
Luenberguer, D.G.: Linear and Nonlinear Programming. Addison-Wesley Pub Co, Reading, MA, 1984
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rojo-Álvarez, J.L., Martínez-Ramón, M., Figueiras-Vidal, A.R., de Prado-Cumplido, M., Artés-Rodríguez, A. (2002). Support Vector Method for ARMA System Identification: A Robust Cost Interpretation. In: Dorronsoro, J.R. (eds) Artificial Neural Networks — ICANN 2002. ICANN 2002. Lecture Notes in Computer Science, vol 2415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46084-5_179
Download citation
DOI: https://doi.org/10.1007/3-540-46084-5_179
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44074-1
Online ISBN: 978-3-540-46084-8
eBook Packages: Springer Book Archive