Extraction of Proofs from the Clausal Normal Form Transformation | SpringerLink
Skip to main content

Extraction of Proofs from the Clausal Normal Form Transformation

  • Conference paper
  • First Online:
Computer Science Logic (CSL 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2471))

Included in the following conference series:

Abstract

This paper discusses the problem of how to transform a first-order formula into clausal normal form, and to simultaneously construct a proof that the clausal normal form is correct. This is relevant for applications of automated theorem proving where people want to be able to use theorem prover without having to trust it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Matthias Baaz, Uwe Egly, and Alexander Leitsch. Normal form transformations. In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 5, pages 275–333. Elsevier Science B. V., 2001.

    Google Scholar 

  2. Matthias Baaz and Alexander Leitsch. On skolemization and proof complexity. Fundamenta Informatika, 4(20):353–379, 1994.

    MathSciNet  Google Scholar 

  3. Henk Barendregt and Herman Geuvers. Proof-assistents using dependent type systems. In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume II, chapter 18, pages 1151–1238. Elsevier Science B.V., 2001.

    Google Scholar 

  4. Stefan Berghofer and Tobias Nipkow. Proof terms for simply typed higher order logic. In Mark Aagaard and John Harrison, editors, Theorem Proving in Higher-Order Logics, TPHOLS 2000, volume 1869 of LNCS, pages 38–52. Springer Verlag, 2000.

    Chapter  Google Scholar 

  5. Marc Bezem, Dimitri Hendriks, and Hans de Nivelle. Automated proof construction in type theory using resolution. In David McAllester, editor, Automated Deduction-CADE-17, number 1831 in LNAI, pages 148–163. Springer Verlag, 2000.

    Google Scholar 

  6. Samuel Boutin. Using reflection to build efficient and certified decision procedures. In Martín Abadi and Takayasu Ito, editors, Theoretical Aspects of Computer Software (TACS), volume 1281 of LNCS, pages 515–529, 1997.

    Chapter  Google Scholar 

  7. Horatiu Cirstea and Claude Kirchner. The rewriting calculus, part 1 + 2. Journal of the Interest Group in Pure and Applied Logics, 9(3):339–410, 2001.

    MATH  MathSciNet  Google Scholar 

  8. Hans de Nivelle. A resolution decision procedure for the guarded fragment. In Claude Kirchner and Héléne Kirchner, editors, Automated Deduction-CADE-15, volume 1421 of LNCS, pages 191–204. Springer, 1998.

    Chapter  Google Scholar 

  9. Xiaorong Huang. Translating machine-generated resolution proofs into ND-proofs at the assertion level. In Norman Y. Foo and Randy Goebel, editors, Topics in Artificial Intelligence, 4th Pacific Rim International Conference on Artificial Intelligence, volume 1114 of LNCS, pages 399–410. Springer Verlag, 1996.

    Google Scholar 

  10. William McCune and Olga Shumsky. Ivy: A preprocessor and proof checker for first-order logic. In Matt Kaufmann, Pete Manolios, and J. Moore, editors, Using the ACL2 Theorem Prover: A tutorial Introduction and Case Studies. Kluwer Academic Publishers, 2002? preprint: ANL/MCS-P775-0899, Argonne National Labaratory, Argonne.

    Google Scholar 

  11. Andreas Nonnengart. Strong skolemization. Technical Report MPI-I-96-2-010, Max Planck Institut für Informatik Saarbrücken, 1996.

    Google Scholar 

  12. Andreas Nonnengart and Christoph Weidenbach. Computing small clause normal forms. In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 6, pages 335–367. Elsevier Science B. V., 2001.

    Google Scholar 

  13. Hans Jürgen Ohlbach and Christoph Weidenbach. A note on assumptions about skolem functions. Journal of Automated Reasoning, 15:267–275, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  14. Frank Pfenning. Analytic and non-analytic proofs. In Robert E. Shostak, editor, 7th International Conference on Automated Deduction CADE 7, volume 170 of LNCS, pages 394–413. Springer Verlag, 1984.

    Chapter  Google Scholar 

  15. Frank Pfenning. Logical frameworks. In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume II, chapter 17, pages 1065–1148. Elsevier Science B.V., 2001.

    Google Scholar 

  16. R. Sekar, I.V. Ramakrishnan, and Andrei Voronkov. Term indexing. In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume 2, chapter 26, pages 1853–1964. Elsevier Science B. V., 2001.

    Google Scholar 

  17. Christoph Weidenbach. The spass homepage. http://spass.mpi-sb.mpg.de/.

  18. Christoph Weidenbach. Combining superposition, sorts and splitting. In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume II, chapter 27, pages 1965–2013. Elsevier Science B.V., 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Nivelle, H. (2002). Extraction of Proofs from the Clausal Normal Form Transformation. In: Bradfield, J. (eds) Computer Science Logic. CSL 2002. Lecture Notes in Computer Science, vol 2471. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45793-3_39

Download citation

  • DOI: https://doi.org/10.1007/3-540-45793-3_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44240-0

  • Online ISBN: 978-3-540-45793-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics