Abstract
We present a polynomial translation of dag sequent proofs into tree sequent proofs for first-order classical and intuitionistic logic. The basic idea is to interpret a reference in a dag proof as a lemma application, which is then simulated using an application of the cut rule. The result of this translation is a tree proof with cuts, which are only applied in order to “factorize” identical subproofs. We illustrate a central application of the presented cut-based translation, that is automated extraction of modular programs from first-order intuitionistic proofs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
S. F. Allen, R. L. Constable et al. The NuPRL Open Logical Environment. In CADE-17, LNAI 1831, pp. 170–176, Springer, 2000.
J. L. Bates and R. L. Constable. Proofs as Programs. ACM Transactions on Programming Languages and Systems, 7(1):113–136, January 1985.
R. L. Constable, S. F. Allen et al. Implementing Mathematics with the NuPRL Proof Development System. Prentice Hall, 1986.
H. B. Curry. Foundations of Mathematical Logic. Dover, Dover edition, 1977.
H. B. Curry, R. Feys, and W. Craig. Combinatory Logic, volume 1. North-Holland, Amsterdam, 1958.
A. Degtyarev and A. Voronkov. The Inverse Method. In J. A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, pp. 177–268, Elsevier Science Publishers, 2001.
E. Eder. Relative Complexities of First Order Calculi. Vieweg, 1992.
U. Egly. On Different Intuitionistic Calculi and Embeddings from INT to S4. Studia Logica, 2001. To appear
U. Egly and S. Schmitt. Intuitionistic Proof Transformations and their Application to Constructive Program Synthesis. In AISC’98, LNAI 1476, pp. 132–144, 1998.
U. Egly and S. Schmitt. On Intuitionistic Proof Transformations, Their Complexity and Application to Constructive Program Synthesis. Fundamenta Informaticae, 39:59–83, 1999.
M. C. Fitting. Intuitionistic Logic, Model Theory and Forcing. Studies in logic and the foundations of mathematics. North-Holland, 1969.
G. Gentzen. Untersuchungen über das logische Schlieβen. Mathematische Zeitschrift, 39:176–210, 405-431, 1935.
W. Howard. The Formulas-as-Types Notion of Construction. In To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism., pp. 479–490, Academic Press 1980.
R. Letz. Polynomial Simulation of Sequent Systems by Tree Sequent Systems. Technical report, Institut für Informatik, TU München, 1992.
S. Maehara. Eine Darstellung der intuitionistischen Logik in der klassischen. Nagoya Mathematical Journal, 7:45–64, 1954.
P. Martin-LÖf. Intuitionistic Type Theory, volume 1 of Studies in Proof Theory Lecture Notes. Bibliopolis, Napoli, 1984.
G. Mints. Resolution Strategies for the Intuitionistic Logic. In B. Mayoh, E. Tyugu, and J. Penyam, editors, Constraint Programming, Nato ASI Series, pp. 289–311. Springer Verlag, 1994.
S. Schmitt and C. Kreitz. On Transforming Intuitionistic Matrix Proofs into Standard-sequent Proofs. In 4th TABLEAUX Workshop, LNAI 918, pp. 106–121, 1995.
S. Schmitt, L. Lorigo, C. Kreitz, and A. Nogin. JProver: Integrating Connection-based Theorem Proving into Interactive Proof Assistants. In IJCAR, this volume, 2001.
W. W. Tait. Intensional Interpretation of Functionals of Finite Type. Journal of Symbolic Logic, 32(2):187–199, 1967.
A. S. Troelstra Marginalia on Sequent Calculi. Studia Logica, 62:291–303,1999.
A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Second Edition. Cambridge Univ. Press, 2000.
R. Vestergaard Revisting Kreisel: A Computational Anomaly in the Troelstra-Schwichtenberg G3i System. Technical report, 1999. http://iml.univ-mrs.fr:80/~vester/Writings/index.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Egly, U., Schmitt, S. (2001). Deriving Modular Programs from Short Proofs. In: Goré, R., Leitsch, A., Nipkow, T. (eds) Automated Reasoning. IJCAR 2001. Lecture Notes in Computer Science, vol 2083. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45744-5_47
Download citation
DOI: https://doi.org/10.1007/3-540-45744-5_47
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42254-9
Online ISBN: 978-3-540-45744-2
eBook Packages: Springer Book Archive