Formalizing the Trading Theorem for the Classification of Surfaces | SpringerLink
Skip to main content

Formalizing the Trading Theorem for the Classification of Surfaces

  • Conference paper
  • First Online:
Theorem Proving in Higher Order Logics (TPHOLs 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2410))

Included in the following conference series:

  • 486 Accesses

Abstract

We study the formalization and then the proof of a well-known theorem of surface topology called the trading theorem. This is the first major work undertaken with our Coq specification of the generalized maps, which may be used as a model for surfaces subdivisions. We explain how we expressed in terms of subdivisions the notion of topological equivalence, and how we used this notion to prove the trading theorem, while giving a quick look at the specification we have built.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barras, B. et al.: The Coq proof assistant reference manual. http://coq.inria.fr/doc/main.html

  2. Bertrand, G., Malgouyres, R.: Some topological properties of surfaces in Z3. Journal of Mathematical Imaging and Vision no 11 (1999) 207–221

    Google Scholar 

  3. Bertrand, Y., Dufourd, J.-F.: Algebraic specification of a 3D-modeler based on hypermaps. Graphical Models and Image Processing (1994) 56(1) 29–60

    Article  Google Scholar 

  4. Coquand, T., Huet, G.: Constructions: a higher order proof system for mechanizing mathematics. EUROCAL (1985) Springer-Verlag LNCS 203

    Google Scholar 

  5. Cori, R.: Un Code pour les Graphes Planaires et ses Applications. Société Math. de France, Astérisque 27 (1970)

    Google Scholar 

  6. Dehlinger, C, Dufourd, J.-F., Schreck, P.: Higher-Order Intuitionistic Formalization and Proofs in Hubert’s Elementary Geometry. Automated Deduction in Geometry (2000) Springer-Verlag LNAI 2061

    Google Scholar 

  7. Firby, P. A., Gardiner, C. F.: Surface Topology. Ellis Horwood Ltd. (1982)

    Google Scholar 

  8. Fomenko, A. T.: Differential Geometry and Topology. Consultant Associates (1987)

    Google Scholar 

  9. Griffiths, H.: Surfaces. Cambridge University Press (1981)

    Google Scholar 

  10. Jacques, A.: Constellations et graphes topologiques. Combinatorial Theory And Applications (1970) 657–673

    Google Scholar 

  11. Kahn, G.: Elements of Constructive Geometry, Group Theory, and Domain Theory. Coq contribution (http://coq.inria.fr/contribs-eng.html)

  12. Knuth, D.E.: Axioms and Hulls. Springer-Verlag (1992) LNCS 606

    MATH  Google Scholar 

  13. Lienhardt, P.: Subdivisions of N-Dimensional Spaces and N-Dimensional Generalized Maps. Computational Geometry ACM Symp. (1989) 228–236

    Google Scholar 

  14. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis (1984)

    Google Scholar 

  15. Parent, C: Synthesizing proofs from programs in the calculus of inductive constructions. Mathematics of Program Construction (1995) Springer-Verlag LNCS 947

    Google Scholar 

  16. Pichardie, D., Bertot, Y.: Formalizing Convex Hulls Algorithms. TPHOL (2001) Springer-Verlag LNCS 2152 346–361

    Google Scholar 

  17. Puitg, F., Dufourd, J.-F.: Formal specifications and theorem proving breakthroughs in geometric modelling. TPHOL (1998) Springer-Verlag LNCS 1479 401–427

    Google Scholar 

  18. Von Plato, J.: The axioms of constructive geometry. Annals of pure and applied logic 76 (1995) 169–200

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dehlinger, C., Dufourd, JF. (2002). Formalizing the Trading Theorem for the Classification of Surfaces. In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2002. Lecture Notes in Computer Science, vol 2410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45685-6_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-45685-6_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44039-0

  • Online ISBN: 978-3-540-45685-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics