Combining Logics: Parchments Revisited | SpringerLink
Skip to main content

Combining Logics: Parchments Revisited

  • Conference paper
  • First Online:
Recent Trends in Algebraic Development Techniques (WADT 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2267))

Included in the following conference series:

Abstract

In the general context of the theory of institutions, several notions of parchment and parchment morphism have been proposed as the adequate setting for combining logics. However, so far, they seem to lack one of the main advantages of the combination mechanism known as fibring: general results of transference of important logical properties from the logics being combined to the resulting fibred logic. Herein, in order to bring fibring to the institutional setting, we propose to work with the novel notion of c-parchment. We show how both free and constrained fibring can be characterized as colimits of c-parchments, and illustrate both the construction and its preservation capabilities by exploring the idea of obtaining partial equational logic by fibring equational logic with a suitable logic of partiality. Last but not least, in the restricted context of propositional based, we state and prove a collection of meaningful soundness and completeness preservation results for fibring, with respect to Hilbert-like proof-calculi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Andréka, Á. Kurucz, I. Németi, and I. Sain. Applying algebraic logic: a general methodology. Preprint, Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Hungary, 1994.

    Google Scholar 

  2. E. Astesiano and M. Cerioli. Free objects and equational deduction for partial conditional specifications. Theoretical Computer Science, 152(1):91–138, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  3. G. Birkhoff. Lattice Theory. AMS Colloquium Publications, 1967.

    Google Scholar 

  4. P. Blackburn and M. de Rijke. Why combine logics? Studia Logica, 59(1):5–27, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  5. W. Blok and D. Pigozzi. Algebraizable Logics, volume 77 of Memoires of the AMS. American Mathematical Society, 1989.

    Google Scholar 

  6. D. Brown and R. Suszko. Abstract logics. Dissertationes Mathematicae, 102:9–41, 1973.

    MathSciNet  Google Scholar 

  7. C. Caleiro. Combining Logics. PhD thesis, IST, TU Lisbon, 2000.

    Google Scholar 

  8. C. Caleiro, W.A. Carnielli, M.E. Coniglio, A. Sernadas, and C. Sernadas. Fibring non-truth-functional logics: Completeness preservation. Preprint, Dep. Mathematics, IST, Lisbon, Portugal, 2000. Submitted.

    Google Scholar 

  9. C. Caleiro and J. Marcos. Non-truth-functional fibred semantics. In H. R. Arabnia, editor, Proceedings of the International Conference on Artificial Intelligence (ICAI’ 2001), volume II, pages 841–847. CSREA Press, Athens GA, USA, 2001.

    Google Scholar 

  10. J. Czelakowski. Equivalential logics (I and II). Studia Logica, 40:227–236and 355-372, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  11. N.C.A. da Costa. On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic, 15(4):497–510, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  12. D. Gabbay. Fibred semantics and the weaving of logics: part 1. Journal of Symbolic Logic, 61(4):1057–1120, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Gabbay. Fibring Logics. Clarendon Press-Oxford, 1999.

    Google Scholar 

  14. J. Goguen and R. Burstall. A study in the foundations of programming methodology: specifications, institutions, charters and parchments. In Category Theory and Computer Programming, volume 240 of LNCS, pages 313–333. Springer-Verlag, 1986.

    Google Scholar 

  15. J. Goguen and R. Burstall. Institutions: abstract model theory for specification and programming. Journal of the ACM, 39(1):95–146, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Hughes and M. Cresswell. A New Introduction to Modal Logic. Routledge, London, 1996.

    MATH  Google Scholar 

  17. N. Martí-Oliet and J. Meseguer. Rewriting logic as a logical and semantic framework. Electronic Notes in Theoretical Computer Science, 4, 1996.

    Google Scholar 

  18. J. Meseguer. General logics. In H.-D. Ebbinghaus et al, editor, Proceedings of the Logic Colloquium’87, pages 275–329. North-Holland, 1989.

    Google Scholar 

  19. T. Mossakowski. Using limits of parchments to systematically construct institutions of partial algebras. In Recent Trends in Data Type Specification, volume 1130 of LNCS, pages 379–393. Springer-Verlag, 1996.

    Google Scholar 

  20. T. Mossakowski, A. Tarlecki, and W. PawKlowski. Combining and representing logical systems. In Category Theory and Computer Science 97, volume 1290 of LNCS, pages 177–196. Springer-Verlag, 1997.

    Chapter  Google Scholar 

  21. T. Mossakowski, A. Tarlecki, and W. PawKlowski. Combining and representing logical systems using model-theoretic parchments. In Recent Trends in Algebraic Development Techniques, volume 1376 of LNCS, pages 349–364. Springer-Verlag, 1998.

    Google Scholar 

  22. A. Sernadas, C. Sernadas, and C. Caleiro. Fibring of logics as a categorial construction. Journal of Logic and Computation, 9(2):149–179, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Sernadas, C. Sernadas, C. Caleiro, and T. Mossakowski. Categorial fibring of logics with terms and binding operators. In D. Gabbay and M. de Rijke, editors, Frontiers of Combining Systems 2, pages 295–316. Research Studies Press, 2000.

    Google Scholar 

  24. A. Sernadas, C. Sernadas, and A. Zanardo. Fibring modal first-order logics: Completeness preservation. Preprint, Section of Computer Science, Department of Mathematics, Instituto Superior Técnico, 1049-001 Lisboa, Portugal, 2001. Submitted forpublication.

    Google Scholar 

  25. T. Smiley. The independence of connectives. Journal of Symbolic Logic, 27(4):426–436, 1962.

    Article  MathSciNet  Google Scholar 

  26. A. Tarlecki, R. Burstall, and J. Goguen. Some fundamental algebraic tools for the semantics of computation. Part 3: indexed categories. Theoretical Computer Science, 91:239–264, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, pages 675–787. ElsevierScience Publishers, 1990.

    Google Scholar 

  28. R. Wójcicki. Theory of Logical Calculi. Synthese Library. Kluwer Academic Publishers, 1988.

    Google Scholar 

  29. A. Zanardo, A. Sernadas, and C. Sernadas. Fibring: Completeness preservation. Journal of Symbolic Logic, 66(1):414–439, 2001.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caleiro, C., Mateus, P., Ramos, J., Sernadas, A. (2002). Combining Logics: Parchments Revisited. In: Cerioli, M., Reggio, G. (eds) Recent Trends in Algebraic Development Techniques. WADT 2001. Lecture Notes in Computer Science, vol 2267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45645-7_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-45645-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43159-6

  • Online ISBN: 978-3-540-45645-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics