Generic Programming Techniques that Make Planar Cell Complexes Easy to Use | SpringerLink
Skip to main content

Generic Programming Techniques that Make Planar Cell Complexes Easy to Use

  • Chapter
  • First Online:
Digital and Image Geometry

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2243))

Abstract

Cell complexes are potentially very useful in many fields, including image segmentation, numerical analysis, and computer graph- ics. However, in practice they are not used as widely as they could be. This is partly due to the difficulties in actually implementing algorithms on top of cell complexes. We propose to use generic programming to design cell complex data structures that are easy to use, efficient, and flexible. The implementation of the new design is demonstrated for a number of common cell complex types and an example algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Austern: “Generic Programming and the STL”, Reading: Addison-Wesley, 1998

    Google Scholar 

  2. G. Berti: “Generic Software Components for Scientific Computing”, PhD thesis, Fakultät für Mathematik, Naturwissenschaften und Informatik, Brandenburgische Technische Universität Cottbus, 2000

    Google Scholar 

  3. J.-F. Dufourd, F. Puitg: “Functional specification and prototyping with oriented combinatorial maps”, Computational Geometry 16 (2000) 129–156

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Gamma, R. Helm, R. Johnson, J. Vlissides: “Design Patterns”, Addison-Wesley, 1994

    Google Scholar 

  5. L. Kettner: “Designing a Data Structure for Polyhedral Surfaces”, Proc. 14 th ACM Symp. on Computational Geometry, New York: ACM Press, 1998

    Google Scholar 

  6. E. Khalimsky, R. Kopperman, P. Meyer: “Computer Graphics and Connected Topologies on Finite Ordered Sets”, J. Topology and its Applications, vol. 36, pp. 1–27, 1990

    Article  MATH  MathSciNet  Google Scholar 

  7. U. Köthe: “Generische Programmierung für die Bildverarbeitun”, PhD thesis, Computer Science Department, University of Hamburg, 2000 (in German)

    Google Scholar 

  8. V. Kovalevsky: “Finite Topology as Applied to Image Analysisly, Computer Vision, Graphics, and Image Processing, 46(2), pp. 141–161, 1989

    Article  Google Scholar 

  9. V. Kovalevsky: “Computergestützte Untersuchung topologischer Eigenschaften mehrdimensionaler Räume”, Preprints CS-03-00, Computer Science Department, University of Rostock, 2000 (in German)

    Google Scholar 

  10. D. Kühl, K. Weihe: “Data Access Templates”, C++ Report Magazine, July/August 1997

    Google Scholar 

  11. M. Mäntylä:“An Introduction to Solid Modeling”, Computer Science Press, 1988

    Google Scholar 

  12. D. Musser, A. Stepanov: “Algorithm-Oriented Generic Libraries”, Software-Practice and Experience, 24(7), 623–642, 1994

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Köthe, U. (2001). Generic Programming Techniques that Make Planar Cell Complexes Easy to Use. In: Bertrand, G., Imiya, A., Klette, R. (eds) Digital and Image Geometry. Lecture Notes in Computer Science, vol 2243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45576-0_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45576-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43079-7

  • Online ISBN: 978-3-540-45576-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics