On Expressive and Model Checking Power of Propositional Program Logics | SpringerLink
Skip to main content

On Expressive and Model Checking Power of Propositional Program Logics

  • Conference paper
  • First Online:
Perspectives of System Informatics (PSI 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2244))

  • 401 Accesses

Abstract

We examine when a model checker for a propositional program logic can be used for checking another propositional program logic in spite of lack of expressive power of the first logic. We prove that (1) a branching time Computation Tree Logic CTL, (2) the propositional μ-Calculus of D. Kozen μC, and (3) the second-order propositional program logic 2M of C. Stirling enjoy the equal model checking power in spite of difference in their expressive powers CTL < μC < 2M: every listed logic has a formula such that every model checker for this particular formula for models in a class closed w.r.t. finite models, Cartesian products and power-sets can be reused for checking all formulae of these logics in all models in this class. We also suggest a new second-order propositional program logic SOEPDL and demonstrate that this logic is more expressive than 2M, is as expressive as the Second order Logic of monadic Successors of M. Rabin (S(n)S-Logic), but still enjoys equal model checking power with CTL, μC and 2M (in the same settings as above).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baldamus M, Schneider K., Wenz M., Ziller R. Can American Checkers be Solved by Means of Symbolic Model Checking? Electronic Notes in Theoretical Computer Science, v.43, http://www.elsevier.nl/gej-ng/31/29/23/show/Products/notes/

  2. Börger E., Grädel E., Gurevich Y. The Classical Decision Problem. Springer, 1997.

    Google Scholar 

  3. Bull R.A., Segerberg K. Basic Modal Logic. Handbook of Philosophical Logic, v.II, Reidel Publishing Company, 1984 (1-st ed.), Kluwer Academic Publishers, 1994 (2-nd ed.), p.1–88.

    MathSciNet  Google Scholar 

  4. Burch J.R., Clarke E.M., McMillan K.L., Dill D.L., Hwang L.J. Symbolic Model Checking: 10 20 states and beyond. Information and Computation, v.98, n.2, 1992, p.142–170.

    Article  MATH  MathSciNet  Google Scholar 

  5. Clarke E.M., Grumberg O., Peled D. Model Checking. MIT Press, 1999.

    Google Scholar 

  6. Cleaveland R., Klain M., Steffen B. Faster Model-Checking for Mu-Calculus. Lecture Notes in Computer Science, v.663, 1993, p.410–422.

    Google Scholar 

  7. Emerson E.A. Temporal and Modal Logic. Handbook of Theoretical Computer Science, v.B, Elsevier and The MIT Press, 1990, 995–1072.

    MathSciNet  Google Scholar 

  8. Fagin R., Halpern J.Y., Moses Y., Vardi M.Y. Reasoning about Knowledge. MIT Press, 1995.

    Google Scholar 

  9. Immerman N Descriptive Complexity: a Logician’s Approach to Computation. Notices of the American Mathematical Society, v.42, n.10, p.1127–1133.

    Google Scholar 

  10. Kozen D. Results on the Propositional Mu-Calculus. Theoretical Computer Science, v.27, n.3, 1983, p.333–354.

    MATH  MathSciNet  Google Scholar 

  11. Kozen D., Tiuryn J. Logics of Programs. Handbook of Theoretical Computer Science, v.B, Elsevier and The MIT Press, 1990, 789–840.

    MathSciNet  Google Scholar 

  12. Rabin M.O. Decidability of second order theories and automata on infinite trees. Trans. Amer. Math. Soc., v.141, 1969, p.1–35.

    Article  MATH  MathSciNet  Google Scholar 

  13. Rabin M.O. Decidable Theories. in Handbook of Mathematical Logic, ed. Barwise J. and Keisler H.J., North-Holland Pub. Co., 1977, 595–630.

    Google Scholar 

  14. Schlinglo. H. On expressive power of Modal Logic on Trees. LNCS, v.620, 1992, p.441–450.

    Google Scholar 

  15. Stirling C. Modal and Temporal Logics. Handbook of Logic in Computer Science, v.2, Claredon Press, 1992, p.477–563.

    MathSciNet  Google Scholar 

  16. Stirling C. Local Model Checking Games. Lecture Notes in Computer Science, v.962, 1995, p.1–11.

    Google Scholar 

  17. Stirling C. Games and Modal Mu-Calculus. Lecture Notes in Computer Science, v.1055, 1996, p.298–312.

    Google Scholar 

  18. Steven P., Stirling C. Practical Model Checking Using Games. Lecture Notes in Computer Science, v.1384, 1998, p.85–101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shilov, N.V., Yi, K. (2001). On Expressive and Model Checking Power of Propositional Program Logics. In: Bjørner, D., Broy, M., Zamulin, A.V. (eds) Perspectives of System Informatics. PSI 2001. Lecture Notes in Computer Science, vol 2244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45575-2_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-45575-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43075-9

  • Online ISBN: 978-3-540-45575-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics