Algorithms in Pure Mathematics | SpringerLink
Skip to main content

Algorithms in Pure Mathematics

  • Chapter
  • First Online:
Computational Discrete Mathematics

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2122))

  • 1205 Accesses

Abstract

In this article, we will discuss algorithmic group theory from the point of view of pure mathematics. We will investigate some of the problems and show why many problems are accessible just for a few years. In algebra there are many problems, which are easy to state, sometimes even easy to prove, and where one might be surprised that there is no algorithmic solution. The two most developed areas of algebra in the sense of existence of algorithms are number theory and group theory. As the understanding of the algorithms in number theory usually needs a lot of deep theory I will restrict myself mainly to group theory. We will look at the algorithms by themselves and not which one is better to implement and similar questions. So this paper will be also interesting for all those who will probably never use a computer to solve a problem. We will see that to find algorithms for basic or more advanced questions is a deep mathematical problem, which uses many results in pure mathematics, and even more important, raises new questions in pure mathematics. So we can say that looking for algorithms is part of pure mathematics, moreover it is a highly nontrivial part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Burnside, Theory of finite groups, 2nd. edn. Cambridge 1911; Dover Publications, 1955

    Google Scholar 

  2. E. Cartan, Ouevres Completes I-1, Paris, Gauthier-Villars, 1952.

    Google Scholar 

  3. Chevalley, Sur certains groupes simple, Tohoku Math. J. 7, 1955, 14–66.

    Article  MATH  MathSciNet  Google Scholar 

  4. C. Chevalley, Seminaire Chevalley, Classification des Groupes de Lie Algebriques, Vol. 2, Paris 1956-58.

    Google Scholar 

  5. A. L. Chistov, D. Yu. Grigoryev, Polynomial time factoring of the multivariable polynomials over a global field, LOMI preprint E5-82, Leningrad 1982.

    Google Scholar 

  6. L. Dickson, A class of groups in an arbitrary realm connected with the configuration of the 27 lines in a cubic surface, J. Math. 33, 1901, 145–173.

    Google Scholar 

  7. M. Furst, J. Hopcroft, E. Luks, Polynomial-time algorithms for permutation groups, Proc. 21st IEEE Symposium Foundations of Computer Science, 1980, 36–41.

    Google Scholar 

  8. W. Kantor, Permutation representations of the finite classical groups of small degree or rank, J. Algebra 60, 1979, 158–168.

    Article  MATH  MathSciNet  Google Scholar 

  9. W. Kantor, Polynomial-time algorithms for finding elements of prime order and Sylow subgroups, J. Algorithms 6, 1985, 478–514.

    Article  MATH  MathSciNet  Google Scholar 

  10. W. Kantor, Sylow’s theorem in polynomial time, J. Comput. Syst. Sci. 30, 1985, 359–394.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Landau, Factoring polynomials over algebraic number fields, SIAM J. on 14, 1985, 184–195.

    Article  MATH  Google Scholar 

  12. A. Lenstra, Factoring polynomials over algebraic number fields, Lecture Notes of Computer Science 162 (Proc. of EUROCAL), Springer 1983, 245–254.

    Google Scholar 

  13. A. Lenstra, H.W. Lenstra Jr., L. Lovasz, Factoring polynomials with rational coefficients, Math. Annalen 261, 1982, 515–534.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Liebeck, C.E. Praeger, J. Saxl, On the O’Nan-Scott theorem for finite primitive permutation groups, J. Australian Math. Soc. 44, 1988, 389–396.

    Article  MATH  MathSciNet  Google Scholar 

  15. E.M. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial time, J. Comput. Syst. Sci. 25 (1982), 42–65.

    Article  MATH  MathSciNet  Google Scholar 

  16. E. Mathieu, Memoire sur le nombre de valeurs que peut acquerir une fonction quand on y permut ses variables de toutes les manieres possible, Liouville’s J. 5, 1860, 9–42.

    Google Scholar 

  17. E. Mathieu, Memoire sur l’etudes des fonctions de plusieurs quantites sur la maniere de les formes et sur les substitutions qui les laissent invariables, Liouville’s J. 6, 1861, 241–323.

    Google Scholar 

  18. E. Mathieu, Sur la fonction cinq fois transitive des 24 quantites, Liouville’s J. 18, 1873, 25–46.

    Google Scholar 

  19. J. Palfy, A polynomial bound for the orders of primitive solvable groups, J.Alg. 77 (1982), 127–137.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Pohst, H. Zassenhaus, Algorithmic algebraic number theory, Cambridge Univ. Press, 1989.

    Google Scholar 

  21. L. Pyber, A. Shalev, Asymptotic results for primitive permutation groups, J. Alg. 188, 1997, 103–124.

    Article  MATH  MathSciNet  Google Scholar 

  22. R. Ree, A family of simple groups associated with the simple Lie algebra F 4, Amer.J. Math. 83, 1961, 401–420.

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Ree, A family of simple groups associated with the simple Lie algebra G2,Amer. J. Math. 83, 1961, 432–462.

    Article  MATH  MathSciNet  Google Scholar 

  24. L. Ronyai, Zero divisors in quaternion algebras, J. Algorithms 9, 1988, 494–506.

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Steinberg, Variations on a theme of Chevalley, Pacific J. Math. 9, 1959, 875–891.

    MATH  MathSciNet  Google Scholar 

  26. M. Suzuki, On a class of double transitive groups I,II, Ann. of Math. 75, 1962, 105–145, 79, 1964, 514–589.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg 2001

About this chapter

Cite this chapter

Stroth, G. (2001). Algorithms in Pure Mathematics. In: Alt, H. (eds) Computational Discrete Mathematics. Lecture Notes in Computer Science, vol 2122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45506-X_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-45506-X_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42775-9

  • Online ISBN: 978-3-540-45506-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics