Scale Adaptive Filtering Derived from the Laplace Equation | SpringerLink
Skip to main content

Scale Adaptive Filtering Derived from the Laplace Equation

  • Conference paper
  • First Online:
Pattern Recognition (DAGM 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2191))

Included in the following conference series:

  • 1247 Accesses

Abstract

In this paper, we present a new approach to scale-space which is derived from the 3D Laplace equation instead of the heat equation. The resulting lowpass and bandpass filters are discussed and they are related to the monogenic signal. As an application, we present a scale adaptive filtering which is used for denoising images. The adaptivity is based on the local energy of spherical quadrature filters and can also be used for sparse representation of images.

This work has been supported by German National Merit Foundation and by DFG Graduiertenkolleg No. 357 (M. Felsberg) and by DFG Grant So-320-2-2 (G.Sommer).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burg, K., Haf, H., AND Wille, F.: Höhere Mathematik für Ingenieure, Band IV Vektoranalysis und Funktionentheorie. Teubner Stuttgart, 1994.

    Google Scholar 

  2. Burt, P.J., AND Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Communications 31, 4 (1983) 532–540.

    Article  Google Scholar 

  3. Felsberg, M., AND Sommer, G.: The multidimensional isotropic generalization of quadrature filters in geometric algebra. In Proc. Int. Workshop on Algebraic Frames for the Perception-Action Cycle, Kiel (2000), G. Sommer and Y. Zeevi, Eds., vol. 1888 of Lecture Notes in Computer Science, Springer-Verlag, Heidelberg, pp. 175–185. Fig. 5. Test image with noise (left), variance: 6e + 3. Isotropic diffusion (parameters: contrast λ = 3, noise scale σ = 2, time step Δt = 0.2, and 50 iterations) yields the result in the middle, variance: 4.5e+3. The image on the right shows the result of our approach, variance: 3.5e + 3

    Chapter  Google Scholar 

  4. Felsberg, M., AND Sommer, G.: A new extension of linear signal processing for estimating local properties and detecting features. In 22. DAGM Symposium Mustererkennung, Kiel (2000), G. Sommer, Ed., Springer-Verlag, Heidelberg, pp. 195–202

    Google Scholar 

  5. Felsberg, M., AND Sommer, G.: The monogenic signal. Tech. Rep. 2016, Institute of Computer Science and Applied Mathematics, Christian-Albrechts-University of Kiel, Germany, May 2001.

    Google Scholar 

  6. Felsberg, M., AND Sommer, G.: The structure multivector. In Applied Geometrical Algebras in Computer Science and Engineering (2001), Birkhäuser. to be published.

    Google Scholar 

  7. Kovesi, P.: Image features from phase information. Videre: Journal of Computer Vision Research 1, 3 (1999).

    Google Scholar 

  8. Lindeberg, T.: Scale-Space Theory in Computer Vision. The Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, Boston, 1994.

    Google Scholar 

  9. Perona, P., AND Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis and Machine Intelligence 12, 7 (1990), 629–639.

    Article  Google Scholar 

  10. Sochen, N., Kimmel, R., AND Malladi, R.: Ageometrical framework for low level vision. IEEE Trans. on Image Processing, Special Issue on PDE based Image Processing 7, 3 (1998), 310–318.

    MATH  MathSciNet  Google Scholar 

  11. Stein, E.M.: Harmonic Analysis. Princeton University Press, New Jersey 1993.

    MATH  Google Scholar 

  12. _Weickert, J.: Anisotropic Diffusion in Image Processing. PhD thesis, Faculty of Mathematics, University of Kaiserslautern, 1996.

    Google Scholar 

  13. Weickert, J., Ishikawa, S., AND Imiya, A.: Scale-space has first been proposed in japan. Mathematical Imaging and Vision (1997).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Felsberg, M., Sommer, G. (2001). Scale Adaptive Filtering Derived from the Laplace Equation. In: Radig, B., Florczyk, S. (eds) Pattern Recognition. DAGM 2001. Lecture Notes in Computer Science, vol 2191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45404-7_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-45404-7_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42596-0

  • Online ISBN: 978-3-540-45404-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics