Abstract
In this paper, we present a new approach to scale-space which is derived from the 3D Laplace equation instead of the heat equation. The resulting lowpass and bandpass filters are discussed and they are related to the monogenic signal. As an application, we present a scale adaptive filtering which is used for denoising images. The adaptivity is based on the local energy of spherical quadrature filters and can also be used for sparse representation of images.
This work has been supported by German National Merit Foundation and by DFG Graduiertenkolleg No. 357 (M. Felsberg) and by DFG Grant So-320-2-2 (G.Sommer).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Burg, K., Haf, H., AND Wille, F.: Höhere Mathematik für Ingenieure, Band IV Vektoranalysis und Funktionentheorie. Teubner Stuttgart, 1994.
Burt, P.J., AND Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Communications 31, 4 (1983) 532–540.
Felsberg, M., AND Sommer, G.: The multidimensional isotropic generalization of quadrature filters in geometric algebra. In Proc. Int. Workshop on Algebraic Frames for the Perception-Action Cycle, Kiel (2000), G. Sommer and Y. Zeevi, Eds., vol. 1888 of Lecture Notes in Computer Science, Springer-Verlag, Heidelberg, pp. 175–185. Fig. 5. Test image with noise (left), variance: 6e + 3. Isotropic diffusion (parameters: contrast λ = 3, noise scale σ = 2, time step Δt = 0.2, and 50 iterations) yields the result in the middle, variance: 4.5e+3. The image on the right shows the result of our approach, variance: 3.5e + 3
Felsberg, M., AND Sommer, G.: A new extension of linear signal processing for estimating local properties and detecting features. In 22. DAGM Symposium Mustererkennung, Kiel (2000), G. Sommer, Ed., Springer-Verlag, Heidelberg, pp. 195–202
Felsberg, M., AND Sommer, G.: The monogenic signal. Tech. Rep. 2016, Institute of Computer Science and Applied Mathematics, Christian-Albrechts-University of Kiel, Germany, May 2001.
Felsberg, M., AND Sommer, G.: The structure multivector. In Applied Geometrical Algebras in Computer Science and Engineering (2001), Birkhäuser. to be published.
Kovesi, P.: Image features from phase information. Videre: Journal of Computer Vision Research 1, 3 (1999).
Lindeberg, T.: Scale-Space Theory in Computer Vision. The Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, Boston, 1994.
Perona, P., AND Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis and Machine Intelligence 12, 7 (1990), 629–639.
Sochen, N., Kimmel, R., AND Malladi, R.: Ageometrical framework for low level vision. IEEE Trans. on Image Processing, Special Issue on PDE based Image Processing 7, 3 (1998), 310–318.
Stein, E.M.: Harmonic Analysis. Princeton University Press, New Jersey 1993.
_Weickert, J.: Anisotropic Diffusion in Image Processing. PhD thesis, Faculty of Mathematics, University of Kaiserslautern, 1996.
Weickert, J., Ishikawa, S., AND Imiya, A.: Scale-space has first been proposed in japan. Mathematical Imaging and Vision (1997).
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Felsberg, M., Sommer, G. (2001). Scale Adaptive Filtering Derived from the Laplace Equation. In: Radig, B., Florczyk, S. (eds) Pattern Recognition. DAGM 2001. Lecture Notes in Computer Science, vol 2191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45404-7_17
Download citation
DOI: https://doi.org/10.1007/3-540-45404-7_17
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42596-0
Online ISBN: 978-3-540-45404-5
eBook Packages: Springer Book Archive