Analysing the Cache Behaviour of Non-uniform Distribution Sorting Algorithms | SpringerLink
Skip to main content

Analysing the Cache Behaviour of Non-uniform Distribution Sorting Algorithms

  • Conference paper
  • First Online:
Algorithms - ESA 2000 (ESA 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1879))

Included in the following conference series:

  • 979 Accesses

Abstract

We analyse the average-case cache performance of distribution sorting algorithms in the case when keys are independently but not uniformly distributed. We use this analysis to tune the performance of the integer sorting algorithm MSB radix sort when it is used to sort independent uniform floating-point numbers (floats). Our tuned MSB radix sort algorithm comfortably outperforms a cache-tuned implementation of bucketsort [11] when sorting uniform floats from [0,1).

Supported in part by EPSRC grant GR/L92150

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, Massachusetts, 1974.

    MATH  Google Scholar 

  2. D. Dubhashi, and D. Ranjan. Balls and Bins: A Study in Negative Dependence. Random Structures and Algorithms 13(2) 1998, pp. 99–124.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Frigo, C. E. Leiserson, H. Prokop and S. Ramachandran. Cache-oblivious algorithms. In Proc. 40th FOCS, pp. 285–298, 1999.

    Google Scholar 

  4. J. Handy. The Cache Memory Handbook. Academic Press, 1998.

    Google Scholar 

  5. J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach, 2e, Morgan Kaufmann, 1996.

    Google Scholar 

  6. K. Joag-Dev and F. Proschan. Negative association of random variables, with applications. Ann Statist. 11 1983, pp. 286–295.

    Article  MathSciNet  Google Scholar 

  7. D. E. Knuth. The Art of Computer Programming. Volume 3: Sorting and Searching, 3rd ed. Addison-Wesley, 1997.

    Google Scholar 

  8. R. E. Ladner, J. D. Fix and A. LaMarca, The cache performance of traversals and random accesses In Proc. 10th ACM-SIAM SODA, pp. 613–622, 1999.

    Google Scholar 

  9. A. LaMarca and R. E. Ladner, The influence of caches on the performance of sorting. In Journal of Algorithms 31 1999, pp. 66–104.

    Article  MATH  MathSciNet  Google Scholar 

  10. K. D. Neubert. The Flashsort1 algorithm. Dr Dobb’s Journal, pp. 123–125, February 1998. Fortran code listing, p. 131, ibid.

    Google Scholar 

  11. N. Rahman and R. Raman. Analysing Cache Effects in Distribution Sorting. In Proc. 3rd WAE, LNCS 1668, pp. 184–198, 1999.

    Google Scholar 

  12. N. Rahman and R. Raman. Adapting radix sort to the memory hierarchy. In Proc. 2nd ALENEX, 2000, x http://www.cs.unm.edu/Conferences/ALENEX00/proceedings.html .

  13. P. Sanders. Accessing multiple sequences through set-associative cache. In Proc. 26th ICALP, LNCS 1644, pp. 655–664, 1999.

    Google Scholar 

  14. S. Sen and S. Chatterjee. Towards a theory of cache-efficient algorithms (extended abstract). In Proc. 11th SODA, pp. 829–838, 2000.

    Google Scholar 

  15. J. S. Vitter. External Memory Algorithms and Data Structures: Dealing with Massive Data. To appear in ACM Computing Surveys.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rahman, N., Raman, R. (2000). Analysing the Cache Behaviour of Non-uniform Distribution Sorting Algorithms. In: Paterson, M.S. (eds) Algorithms - ESA 2000. ESA 2000. Lecture Notes in Computer Science, vol 1879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45253-2_35

Download citation

  • DOI: https://doi.org/10.1007/3-540-45253-2_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41004-1

  • Online ISBN: 978-3-540-45253-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics