Machine Learning in Human Language Technology | SpringerLink
Skip to main content

Machine Learning in Human Language Technology

  • Chapter
  • First Online:
Machine Learning and Its Applications (ACAI 1999)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2049))

Included in the following conference series:

  • 4444 Accesses

Abstract

The undoubted usefulness of present-day information systems is only moderated by the fact that people have to invest substantial effort and training time in order to learn how to use them. Even modern applications with Graphical-User Interfaces (which are considered user-friendly), built-in wizards and on-line context-sensitive help, require a considerable self-training period, thus discouraging most people from fully exploiting their capabilities. In the years to come we expect that information systems will gradually become more and more complex and since the training period is usually proportional to the system complexity, with the usual Human Computer Interaction methods less and less people will have the time to learn how to use a new piece of software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker, J. (1979). “Trainable Grammars for Speech Recognition”, in Speech Communication Papers for the 97th Meeting of the Acoustical Society of America, June 1979,Cambridge, MA, New York, pp.547–550.

    Google Scholar 

  2. Basili R., Pazienza M. T., Vindigni M. (1999). “Lexical Learning for Improving Syntactic Analysis”. In [27].

    Google Scholar 

  3. Black E., Garside R., Leech G. (eds.) (1993). “Statistically-Driven Computer Grammars of English: The IBM/Lancaster Approach”, Language and Computers: Studies in Practical Linguistics 8, Rodopi, Amsterdam.

    Google Scholar 

  4. Brent M. (1993). “From Grammar to Lexicon: Unsupervised Learning of Lexical Syntax”, Computational Linguistics: Special Report on Using Large Corpora: II, Vol.19, pp.243–262.

    Google Scholar 

  5. Brill E., (1993). “Automatic Grammar Induction and Parsing Free Text: A Transformation-Based Approach”, in Proc. of the 31st Annual Meeting of ACL, June 1993, Columbus, OH, pp.259-265.

    Google Scholar 

  6. Briscoe E., Carroll J. (1991). “Generalized Probabilistic LR Parsing of Natural Language (Corpora) with Unification-Based Grammars”, Cambridge University, Technical Report 224.

    Google Scholar 

  7. Brown P., Della Pietra V., deSouza P., Lai J., Mercer R. (1992). “Class-Based n-Gram Models of Natural Language”, Computational Linguistics, Vol.18, pp.467–479.

    Google Scholar 

  8. Cardie C., Mooney R.J. (1999). “Guest Editor’s Introduction: Machine Learning and Natural Language”, Machine Learning, Vol.34 (Special Issue on Natural Language Learning), pp.5–9, Kluwer Academic Publishers.

    Article  Google Scholar 

  9. Charniak E. (1993). “Statistical Language Learning”, Cambridge, MA, MIT Press.

    Google Scholar 

  10. Cole R. A., Mariani J., Uszkoreit H., Zaenen A., Zue V., Varile G. B., Zampolli A. (eds.). (1996). “Survey of the State of the Art in Human Language Technology”, (http://cslu.cse.ogi.edu/HLTsurvey/).

  11. Dermatas E., Kokkinakis G. (1995). “Automatic Stochastic Tagging of Natural Language Texts”, Computational Linguistics, Vol.21, pp.137–164.

    Google Scholar 

  12. Joshi A. (1995). “Some Recent Trends in Natural Language Processing”, in Zampoli A., Calzolari N., Palmer M. (eds.) Current Issues in Computational Linguistics: In Honor of Don Walker, Kluwer Academic Publishers, pp.491–501.

    Google Scholar 

  13. Kameda H., Sakurai T., Kubomura C. (1999). “Unknown Word Acquisition System for Japanese Written-Language Document”. In [27][27].

    Google Scholar 

  14. Kodratoff Y. (1999). “About Knowledge Discovery in Texts: A Definition and an Example”. In [27][27].

    Google Scholar 

  15. Levinson D. (1999). “Corpus-Based Method for Unsupervised Word Sense Disambiguation”. In [27][27].

    Google Scholar 

  16. Megyesi B. (1999). “Brill’s PoS Tagger with Extended Lexical Templates for Hungarian”. In [27][27].

    Google Scholar 

  17. Nagao M., Nakamura J. (1982). “A Parser which Learns the Application Order of Rewriting Rules”, in Proc. of the 9th International Conference on Computational Linguistics (COLING), Prague, 1982, North-Holland Publishing Co., pp.253–258.

    Google Scholar 

  18. Orphanos G., Kalles D., Papagelis T., Christodoulakis D. (1999). “Decision Trees and NLP: A Case Study in POS Tagging”. In [27][27].

    Google Scholar 

  19. Petasis G., Paliouras G., Karkaletsis V., Spyropoulos C. D., Androutsopoulos I. (1999). “Resolving Part-of-Speech Ambiguity in the Greek Language Using Learning Techniques”. In [27][27].

    Google Scholar 

  20. Sakurai S., Endo T., Mukai T., Oka R. (1999). “Automatic Task Modeling for Realizing a Multi-modal Interface System”. In [27][27].

    Google Scholar 

  21. Sparck-Jones K. (1994). “Natural Language Processing: A Historical Review”, in Zampoli A., Calzolari N., Palmer M. (eds.) Current Issues in Computational Linguistics: In Honor of Don Walker, Kluwer Academic Publishers, pp.3–15.

    Google Scholar 

  22. Stamatatos E., Fakotakis N., Kokkinakis G. (1999). “Automatic Extraction of Rules for Sentence Boundary Disambiguation”. In [27][27].

    Google Scholar 

  23. Stolcke A. (1995). “Efficient Probabilistic Context-Free Parsing”, Computational Linguistics, Vol.21, pp.165–202.

    MathSciNet  Google Scholar 

  24. Thomas B. (1999). “Learning T-Wrappers for Information Extraction”. In [27][27].

    Google Scholar 

  25. Veenstra J. (1999). “Memory-Based Text Chunking”. In [27][27].

    Google Scholar 

  26. Wilms G. J. (1995). “Automated Induction of a Lexical Sublanguage Grammar using a Hybrid System of Corpus-and Knowledge-Based Techniques”, Ph.D. Dissertation, Mississippi State University, Department of Computer Science.

    Google Scholar 

  27. Proceedings of the Workshop on Machine Learning in Human Language Technology, Advanced Course on Artificial Intelligence (ACAI’ 99), Chania, Greece, 1999 (http://www.iit.demokritos.gr/skel/eetn/acai99/Workshops.htm).

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fakotakis, N.D., Sgarbas, K.N. (2001). Machine Learning in Human Language Technology. In: Paliouras, G., Karkaletsis, V., Spyropoulos, C.D. (eds) Machine Learning and Its Applications. ACAI 1999. Lecture Notes in Computer Science(), vol 2049. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44673-7_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-44673-7_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42490-1

  • Online ISBN: 978-3-540-44673-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics