Abstract
The prototypical use of “classical” connectionist models (including the multilayer perceptron (MLP), the Hopfield network and the Kohonen self-organizing map) concerns static data processing. These classical models are not well suited to working with data varying over time. In response to this, temporal connectionist models have appeared and constitute a continuously growing research field. The purpose of this chapter is to present the main aspects of this research area and to review the key connectionist architectures that have been designed for solving temporal problems.
Preview
Unable to display preview. Download preview PDF.
References
Abbott, L. F., & Kepler, T. B. (1990). Model neurons: from Hodgkin-Huxley to Hopfield. In Garrido, L. (Ed.), Statistical Mechanics of Neural Networks, pp. 5–18. Springer.
Abeles, M. (1982). Local cortical circuits: an electrophysiological study (Studies of brain functions, Vol. 6). Springer Verlag.
Amit, D. J. (1988). Neural network counting chimes. Proc. Nat. Acad. Sci. USA, 85, 2141–2145.
Back, A., & Tsoi, A. (1991). FIR and IIR Synapses: A New Neural Network Architecture for Time Series Modeling. Neural Computation, 3(3), 375–385.
Bengio, Y., Cardin, R., de Mori, R., & Merlo, E. (1989). Programmable Execution of Multi-Layered Networks for Automatic Speech Recognition. Communications of the ACM, 32, 195–199.
Bengio, Y., Frasconi, P., & Simard, P. (1993). The problem of learning long-term dependencies in recurrent networks. In IEEE Transactions on Neural Networks, pp. 1183–1195 San Francisco. IEEE Press. (invited paper).
Bengio, Y., Mori, R. D., & Gori, M. (1992). Learning the Dynamic Nature of Speech with Back-propagation for Sequences. Pattern Recognition Letters, 13(5), 375–386.
Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies is difficult. IEEE Trans. on Neural Networks, 5(2), 157–166.
Béroule, D. (1987). Guided propagation inside a topographic memory. In 1st int. conf. on neural networks, pp. 469–476 San Diego. IEEE.
Bodenhausen, U., & Waibel, A. (1991). The Tempo2 algorithm: adjusting time delays by supervised learning. In Lippmann, R. P., Moody, J., & Tourestzky, D. S. (Eds.), Advances in Neural Information Processing Systems, Vol. 3, pp. 155–161 San Mateo (CA). Morgan Kaufmann.
Bonnet, D., Perrault, V., & Grumbach, A. (1997a). Daily Passenger Traffic Forecasting using δ-NARMA Neural Networks. In Proceedings of the World Congress on Railroad Research (WCRR’97), pp. CD-ROM.
Bonnet, D., Perrault, V., & Grumbach, A. (1997b). δ-NARMA neural network: a new approach to signal prediction. IEEE Transaction on Signal Processing, 45(11), 2799–2810.
Bonnet, D., Perrault, V., & Grumbach, A. (1997c). δ-NARMA neural networks: a connectionist extension of ARARMA models. In Verleysen, M. (Ed.), Proceedings of the European Symposium on Artificial Neural Networks, pp. 127–132 Brussels (Belgium). D Facto.
Bourlard, H., & Morgan, N. (1994). Connectionist Speech Recognition — A Hybrid Approach. Kluwer Academic Publishers.
Bourlard, H., & Morgan, N. (1998). Hybrid HMM/ANN Systems for Speech Recognition: Overview and New Research Directions. In Giles, C. L., & Gori, M. (Eds.), Adaptive Processing of Sequences and Data Structures, Vol. 1387 of Lecture Notes in Artificial Intelligence, pp. 389–417. Springer.
Catfolis, T. (1994). Mapping a complex temporal problem into a combination of static and dynamic neural networks. Sigart Bulletin, 5(3), 23–28.
Chappelier, J.-C., & Grumbach, A. (1994). Time in Neural Networks. Sigart Bulletin, 5(3), 3–10.
Chappelier, J.-C., & Grumbach, A. (1996). A Kohonen Map for Temporal Sequences. In NEURAP’95 Marseille.
Chappelier, J.-C., & Grumbach, A. (1998). RST: a Connectionist Architecture to Deal with Spatiotemporal Relationships. Neural Computation, 10(4), 883–902.
Chappell, G. J., & Taylor, J. G. (1993). The Temporal Kohonen Map. NN, 6, 441–445.
Cleeremans, A., Servan-Schreiber, D., & McClelland, J. (1989). Finite State Automata and Simple Recurrent Networks. Neural Computation, 1, 372–381.
Connor, J., Atlas, L. E., & Martin, D. R. (1992). Recurrent network and NARMA modelling. In Hanson, S. J., Lippmann, R. P., Moody, J. E., & Touretzky, D. S. (Eds.), Advances in Neural Information Processing Systems, Vol. 4, pp. 301–308. Morgan Kaufmann, San Mateo (CA).
Connor, J., & Martin, D. R. (1994). Recurrent neural networks and robust time series prediction. IEEE Transactions on Neural Networks, 5(2), 240–253.
de Vries, B., & Principe, J. C. (1992). The Gamma model. A new neural model for temporal processing. Neural Networks, 5, 565–576.
Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.
Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7(2), 195–226.
Euliano, N. R., & Principe, J. C. (1996). Spatio-Temporal Self-Organizing Feature Maps. In IJCNN’96, Vol. 4, pp. 1900–1905.
Fogelman-Soulié, F., & Gallinari, P. (Eds.). (1998). Industrial Applications of Neural Networks. World Scientific Publishing Co.
Frasconi, P. (1998). An introduction to learning structured information. In Giles, C. L., & Gori, M. (Eds.), Adaptive Processing of Sequences and Data Structures, Vol. 1387 of Lecture Notes in Artificial Intelligence, pp. 99–120. Springer.
Frasconi, P., Gori, M., & Soda, G. (1992). Local Feedback Multi-Layered Networks. Neural Computation, 4(2), 120–130.
Frasconi, P., Gori, M., & Sperduti, A. (1998). A general framework for adaptive processing of data structures. IEEE Transactions on Neural Networks, 9, 768–786.
Funahashi, K., & Nakamura, Y. (1993). Approximations of dynamical systems by continuous time recurrent neural networks. Neural Networks, 6(6), 801–806.
Gerstner, W. (1995). Time structure of the activity in neural network models. Physical Review E, 51, 738–758.
Goldberg, K. Y., & Pearlmutter, B. A. (1989). Using Backpropagation with Temporal Windows to Learn the dynamics of the CMU Direct-Drive Arm II. In Touretzky, D. S. (Ed.), Advances in Neural Information Processing Systems, Vol. 1. Morgan-Kaufmann.
Gori, M. (Ed.). (1992). Neural Networks for Speech Processing. Lint.
Gorman, R. P., & Sejnowski, T. J. (1988). Analysis of hidden units in a layered network trained to classify sonar targets. NN, 1, 75–89.
Hirch, M. W. (1991). Network dynamics: Principles and problems. In Paseman, F., & Doebner, H. (Eds.), Neurodynamics, Series on neural networks, pp. 3–29. World Scientific.
Hochreiter, S., & Schmidhuber, J. (1997a). Bridging Long Time Lags by Weight Guessing and “Lond Short Term Memory”. In Silva, F. L., Principe, J. C., & Almeida, L. B. (Eds.), Spatiotemporal Models in Biological and Artificial Systems, pp. 65–72. IOS Press.
Hochreiter, S., & Schmidhuber, J. (1997b). Long Short-Term Memory. NC, 9(8), 1735–1780.
Horn, D., & Usher, M. (1991). Parallel activation of memories in an oscillatory neural network. Neural Computation, 3(1), 31–43.
Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. NN, 4, 251–257.
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward neural networks are universal approximators. NN, 2(5), 359–366.
Jacquemin, C. (1994). A Temporal Connectionnist Approach to Natural Language. Sigart Bulletin, 5(3), 12–22.
Jordan, M. I. (1986). Attractor dynamics and parallelism in a connectionist sequential machine. In Proc. of the 8th annual conference on Cognitive Science. Erlbaum.
Kangas, J. (1990). Time-Delayed Self-Organizing Maps. In Proceedings of IJCNN’90, Vol. II, pp. 331–336.
Kohonen, T. (1991). The HyperMap Architecture. In T. Kohonen, K. Makisara, O. S., & Kangas, J. (Eds.), Artificial Neural Networks, pp. 1357–1360. North-Holland.
Kolen, J. F. (1994). Recurrent Networks: State Machines or Iterated Function Systems?. In Mozer, M. C., Smolensky, P., Touretzky, D. S., Elman, J. L., & Weigend, A. S. (Eds.), Proceedings of the 1993 Connectionist Models Summer School, pp. 203–210 Hillsdale NJ. Erlbaum.
Kopecz, K. (1995). Unsupervised Learning of Sequences on Maos with Lateral Connectivity. In Proceedings of ICANN’95, Vol. 2, pp. 431–436.
Lane, P. C. R., & Henderson, J. B. (1998). Simple Synchrony Networks: Learning to parse natural language with Temporal Synchrony Variable Binding. In Noklasson, L., Boden, M., & Ziemke, T. (Eds.), Proc. of 8th Int. Conf. on Artificial Neural Networks (ICANN’98), pp. 615–620 Skövde (Sweden).
Lane, P. C. R., & Henderson, J. B. (2000). Incremental Syntactic Parsing of Natural Language Corpora with Simple Synchrony Networks. IEEE Transactions on Knowledge and Data Engineering, to appear. Special Issue on Commenctionist Models for Learning in Structured Domains.
Lang, K. J., Waibel, A. H., & Hinton, G. E. (1990). A time-delay neural-network architecture for isolated word recognition. Neural Networks, 3(1), 23–44.
Lapedes, A. S., & Farber, R. (1987). Nonlinear signal processing using neural networks: prediction and system modelling. Tech. rep. LA-UR-87-2662, Los Alamos National Laboratory, Los Alamos (CA).
Lumer, E. D., & Huberman, B. A. (1992). Binding hierarchies: a basis for dynamic perceptual grouping. NC, 4, 341–355.
Maass, W. (1994). On the computationnal complexity of networks of spiking neurons. In NIPS’94 Proc., Vol. 7. MIT-Press.
Maass, W. (1996). Lower bounds for the computational power of networks of spiking neurons. Neural Computation, 8(1), 1–40.
Maass, W. (1997a). Analog Computing with Temporal Coding in Networks of Spiking Neurons. In Silva, F. L., Principe, J. C., & Almeida, L. B. (Eds.), Spatiotemporal Models in Biological and Artificial Systems, pp. 97–104. IOS Press.
Maass, W. (1997b). Networks of spiking neurons: the third generation of neural network models. Neural Networks, 10(9), 1659–1671.
MacGregor, R. J., & Lewis, E. R. (1977). Neural Modeling, Electric signal processing in the neurons systems. Plenum Press.
Miller., C. B., & Giles, C. L. (1993). Experimental Comparison of the Effect of Order in Recurrent Neural Networks. Int. Journal of Pattern Recognition and Artificial Intelligence, 7(4), 849–872.
Morasso, P. (1991). Self-Organizing Feature Maps for Cursive Script Recognition. In T. Kohonen, K. Makisara, O. S., & Kangas, J. (Eds.), Artificial Neural Networks, pp. 1323–1326. North-Holland.
Mozayyani, N., Alanou, V., Dreyfus, J., & Vaucher, G. (1995). A Spatio-Temporal Data-Coding Applied to Kohonen Maps. In International Conference on Artificial Neural Networks, Vol. 2, pp. 75–79.
Mozer, M. C. (1994). Neural Net Architectures for Temporal Sequence Processing. In Weigend, A., & Gershenfeld, N. (Eds.), Time Series Prediction, pp. 243–264. Addison-Wesley.
Mozer, M. (1989). A Focused Back-Propagation Algorithm for Temporal Pattern Recognition. Complex Systems, 3, 349–381.
Narendra, K. P., & Parthasarathy, K. (1990). Identification and Control of Dynamical Systems using Neural Networks. IEEE Transactions on Neural Networks, 1, 4–27.
Nerrand, O., Roussel-Ragot, P., Personnaz, L., Dreyfus, G., & Marcos, S. (1993). Neural networks and nonlinear adaptive filtering: unifiying concepts and new algorithms. Neural Computation, 5, 165–197.
Omlin, C., & Giles, C. (1996). Constructing Deterministic Finite-State Automata in Recurrent Neural Networks. Journal of the ACM, 43(6), 937–972.
Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence, 46(1–2), 77–106.
Privitera, C. M., & Morasso, P. (1993). A New Approach to Storing Temporal Sequences. In Proc. IJCNN’93, pp. 2745–2748.
Ramacher, U. (1993). Hamiltonian dynamics of neural networks. Neural Networks, 6(4), 547–557.
Reber, A. S. (1976). Implicit learing of synthetic languages: The role of the instructional set. Journal of Experimental Psycology: Human Learning and Memory, 2, 88–94.
Rinzel, J., & Ermentrout, G. B. (1989). Analysis of Neural Excitability and Oscillations. In Koch, C., & Segev, I. (Eds.), Methods in Neural Modeling — From Synapses to Networks, pp. 135–169. MIT Press.
Robinson, T. (1994). An application of recurrentn nets to phone probability estimation. IEEE Trans. on Neural Networks, 5(2), 298–305.
Rohwer, R. (1994). The Time Dimension of Neural Network Models. Sigart Bulletin, 5(3), 36–44.
Servan-Schreiber, Cleeremans, A., & McClelland, J. (1991). Graded state machines: The representation of temporal contingencies in simple recurrent networks. Machine Learning, 7(2), 161–194.
Shastri, L., & Ajjanagadde, V. (1993). From simple associations to systematic reasoning: a connectionist representation of rules, variables and dynamic bindings using temporal synchrony. Behavioral and Brain Sciences, 16, 417–494.
Siegelmann, H. T., & Sontag, E. D. (1995). On the Computational Power of Neural Nets. Journal of Computers and System Sciences, 50, 132–150.
Simpson, P. K., & Deich, R. O. (1988). Neural networks, fuzzy logic and acoustic pattern generation. In Proceedings of AAAIC’88.
Sperduti, A. (1998). Neural Network for Processing Data Structures. In Giles, C. L., & Gori, M. (Eds.), Adaptive Processing of Sequences and Data Structures, Vol. 1387 of Lecture Notes in Artificial Intelligence, pp. 121–144. Springer.
Tank, D. W., & Hopfield, J. J. (1987). Neural computation by concentring information in time. Proc. Nat. Acad. Sci. USA, 84, 1896–1900.
Tsoi, A. C. (1998). Recurent Neural Network Architectures: An Overview. In Giles, C. L., & Gori, M. (Eds.), Adaptive Processing of Sequences and Data Structures, Vol. 1387 of Lecture Notes in Artificial Intelligence, pp. 1–26. Springer.
Tsoi, A. C., & Back, A. (1997). Discrete time recurent neural network architectures: A unifying review. NeuroComputing, 15(3 & 4), 183–223.
Unnikrishnan, K. P., Hopfield, J. J., & Tank, D. W. (1991). Connected-digit speaker-dependent speech recognition using a neural network with time delay connections. IEEE Transaction on Signal Processing, 39(3), 698–713.
Vaucher, G. (1996). Neuro-Biological Bases for Spario-Temporal Data Coding in Artificial Neural Networks. Lecture Notes in Computer Science, 1112, 703ff.
Williams, R. J., & Peng, J. (1990). An Efficient Gradient-Based Algorithm for On-Line Training of Recurrent Network Trajectories. Neural Computation, 2(4), 490–501.
Williams, R., & Zipser, D. (1989). A Learning Algorithm for Continually Running Fully Recurrent Neural Networks. Neural Computation, 1(3), 270–280.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Chappelier, JC., Gori, M., Grumbach, A. (2000). Time in Connectionist Models. In: Sun, R., Giles, C.L. (eds) Sequence Learning. Lecture Notes in Computer Science(), vol 1828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44565-X_6
Download citation
DOI: https://doi.org/10.1007/3-540-44565-X_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41597-8
Online ISBN: 978-3-540-44565-4
eBook Packages: Springer Book Archive