Automatic Adaptation of a Natural Language Interface to a Robotic System | SpringerLink
Skip to main content

Automatic Adaptation of a Natural Language Interface to a Robotic System

  • Conference paper
  • First Online:
Advances in Artificial Intelligence — IBERAMIA 2002 (IBERAMIA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2527))

Included in the following conference series:

  • 891 Accesses

Abstract

This paper shows an application of four neural networks architectures for the automatic adaptation of the voice interface to a robotic system. These architectures are flexible enough to allow a nonspecialist user to train the interface to recognize the syntax of new commands to the teleoperated environment. The system has been tested in a real experimental robotic system applied to perform simple assembly tasks, and the experiments have shown that the networks are robust and efficient for the trained tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shin Ho, E.K., Wan, L.C.: How to Design a Connectionist Holistic Parser. Neural Computation 11, p. 1995–2016 (1999).

    Article  Google Scholar 

  2. Lawrence, S., Giles, C.L., Fong, S.: Natural Language Grammatical Inference with Recurrent Neural Networks. IEEE Transactions on Knowledge and Data Engineering (2000).

    Google Scholar 

  3. Regier, T.: A Model of the Human Capacity for Categorizing Spatial Relations. Cognitive Linguistics 6-1 (1995), pp. 63–88.

    Article  Google Scholar 

  4. Stolcke, A., Ries, K., Coccaro, N., Shriberg, E., Bates, R., Jurafsky, D., Taylor, P., Martin, R., Van Ess-Dykema, C., Meteer M.: Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech. Computational Linguistics 26(3), pp. 339–373 (2000).

    Article  Google Scholar 

  5. Ñeco, R.P., Reinoso, O., Garcia, N., Aracil, R.: A Structure for Natural Language Programming in Teleoperation. In: Proc. of the 6th International Conference on Control, Automation, Robotics and Vision, Singapur, December 2000.

    Google Scholar 

  6. Jurafsky, D., Martin, J.H.: Speech and Language Processing. Prentice Hall. (2000).

    Google Scholar 

  7. Stolcke, A.:Learning feature-based semantics with simple recurrent networks, TR-90-015, ICSI, Berkeley, California (1990).

    Google Scholar 

  8. St. John, M.F., McClelland, J.: Learning and applying contextual constraints in sentence comprehension, Arificial Intelligence 46 (1990) 5–46.

    Google Scholar 

  9. MacWhinney, B., Leinbach, J., Taraban, R., McDonald, J.: Language learning: cues or rules?, Journal of Memory and Language 28 (1989) 255–277.

    Article  Google Scholar 

  10. Watrous, R., Kuhn, G.: Induction of.nite-state languages using second-order recurrent networks, Neural Computation 4(3) (1992).

    Google Scholar 

  11. Sperduti, A., Starita, A., Goller, C.: Learning distributed representations for the classification of terms. Proceedings of the International Joint Conference on Artificial Intelligence (1995) pp. 509–515.

    Google Scholar 

  12. Zeng, Z., Goodman, R., Smyth, P.: Discrete recurrent neural networks for grammatical infence. IEEE Transactions on Neural Networks 5(2) (1994) 320–330.

    Article  Google Scholar 

  13. Giles, C.L, Horne, B., Lin, T.: Learning a class of large.nite state machines with a recurrent neural network. Neural Networks 8(9) (1995) 1359–1365.

    Article  Google Scholar 

  14. Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Trans. on Neural Networks, 1(1):4–27 (1990).

    Article  Google Scholar 

  15. Elman, J.L.: Distributed representations, simple recurrent networks and grammatical structure, Machine Learning, 7(2/3):195–226 (1991).

    Article  Google Scholar 

  16. Back, A.D., Tsoi, A.C.: FIR and IIR synapses, a new neural network architecture for time series modelling Neural Computation, 3(3):337–350 (1991).

    Google Scholar 

  17. Pollack, J.B.: Recursive distributed representations, Artificial Intelligence, 46, 77–105.

    Google Scholar 

  18. Williams, R.J., Zipser, D.:Gradient-based learning algorithms for recurrent connectionist networks, in Chauvin, Y., Rumelhart, D.E. (eds.), Backpropagation: Theory, Architecture, and Applications. Erlbaum, Hillsdale, NJ, (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ñeco, R.P., Reinoso, Ó., Azorín, J.M., Sabater, J.M., Asunción Vicente, M., García, N. (2002). Automatic Adaptation of a Natural Language Interface to a Robotic System. In: Garijo, F.J., Riquelme, J.C., Toro, M. (eds) Advances in Artificial Intelligence — IBERAMIA 2002. IBERAMIA 2002. Lecture Notes in Computer Science(), vol 2527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36131-6_73

Download citation

  • DOI: https://doi.org/10.1007/3-540-36131-6_73

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00131-7

  • Online ISBN: 978-3-540-36131-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics