Abstract
This paper shows an application of four neural networks architectures for the automatic adaptation of the voice interface to a robotic system. These architectures are flexible enough to allow a nonspecialist user to train the interface to recognize the syntax of new commands to the teleoperated environment. The system has been tested in a real experimental robotic system applied to perform simple assembly tasks, and the experiments have shown that the networks are robust and efficient for the trained tasks.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shin Ho, E.K., Wan, L.C.: How to Design a Connectionist Holistic Parser. Neural Computation 11, p. 1995–2016 (1999).
Lawrence, S., Giles, C.L., Fong, S.: Natural Language Grammatical Inference with Recurrent Neural Networks. IEEE Transactions on Knowledge and Data Engineering (2000).
Regier, T.: A Model of the Human Capacity for Categorizing Spatial Relations. Cognitive Linguistics 6-1 (1995), pp. 63–88.
Stolcke, A., Ries, K., Coccaro, N., Shriberg, E., Bates, R., Jurafsky, D., Taylor, P., Martin, R., Van Ess-Dykema, C., Meteer M.: Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech. Computational Linguistics 26(3), pp. 339–373 (2000).
Ñeco, R.P., Reinoso, O., Garcia, N., Aracil, R.: A Structure for Natural Language Programming in Teleoperation. In: Proc. of the 6th International Conference on Control, Automation, Robotics and Vision, Singapur, December 2000.
Jurafsky, D., Martin, J.H.: Speech and Language Processing. Prentice Hall. (2000).
Stolcke, A.:Learning feature-based semantics with simple recurrent networks, TR-90-015, ICSI, Berkeley, California (1990).
St. John, M.F., McClelland, J.: Learning and applying contextual constraints in sentence comprehension, Arificial Intelligence 46 (1990) 5–46.
MacWhinney, B., Leinbach, J., Taraban, R., McDonald, J.: Language learning: cues or rules?, Journal of Memory and Language 28 (1989) 255–277.
Watrous, R., Kuhn, G.: Induction of.nite-state languages using second-order recurrent networks, Neural Computation 4(3) (1992).
Sperduti, A., Starita, A., Goller, C.: Learning distributed representations for the classification of terms. Proceedings of the International Joint Conference on Artificial Intelligence (1995) pp. 509–515.
Zeng, Z., Goodman, R., Smyth, P.: Discrete recurrent neural networks for grammatical infence. IEEE Transactions on Neural Networks 5(2) (1994) 320–330.
Giles, C.L, Horne, B., Lin, T.: Learning a class of large.nite state machines with a recurrent neural network. Neural Networks 8(9) (1995) 1359–1365.
Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Trans. on Neural Networks, 1(1):4–27 (1990).
Elman, J.L.: Distributed representations, simple recurrent networks and grammatical structure, Machine Learning, 7(2/3):195–226 (1991).
Back, A.D., Tsoi, A.C.: FIR and IIR synapses, a new neural network architecture for time series modelling Neural Computation, 3(3):337–350 (1991).
Pollack, J.B.: Recursive distributed representations, Artificial Intelligence, 46, 77–105.
Williams, R.J., Zipser, D.:Gradient-based learning algorithms for recurrent connectionist networks, in Chauvin, Y., Rumelhart, D.E. (eds.), Backpropagation: Theory, Architecture, and Applications. Erlbaum, Hillsdale, NJ, (1990).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ñeco, R.P., Reinoso, Ó., Azorín, J.M., Sabater, J.M., Asunción Vicente, M., García, N. (2002). Automatic Adaptation of a Natural Language Interface to a Robotic System. In: Garijo, F.J., Riquelme, J.C., Toro, M. (eds) Advances in Artificial Intelligence — IBERAMIA 2002. IBERAMIA 2002. Lecture Notes in Computer Science(), vol 2527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36131-6_73
Download citation
DOI: https://doi.org/10.1007/3-540-36131-6_73
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00131-7
Online ISBN: 978-3-540-36131-2
eBook Packages: Springer Book Archive