Optimization of Sheet Metal Products | SpringerLink
Skip to main content

Optimization of Sheet Metal Products

  • Conference paper
Operations Research Proceedings 2005

Summary

Linear flow splitting enables the forming of branched sheet metal products in integral style. To optimize those products design parameters have to be based on market requirements. We show that methods that are also used in Operations Research can, in principle, be applied to solve these optimization problems. For this, engineers provide constructive parameters that describe the demands of customers in a mathematical way. Based on these descriptions, we develop a two-stage model. First, a topology and shape optimization of branched sheet metal products is carried out, where the best-possible product is automatically designed by solving some OR models. Then, in stage two, we deal with the problem of how to incorporate manufacturing constraints for sheet metal products. The solution to this model corresponds to a construction plan. The entire approach is demonstrated in the design and construction of a cable conduit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Fletcher, N.I.M. Gould, S. Leyffer, Ph.L. Toint, A. Wächter. Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming. SIAM J. Optim. 13: 635–659, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  2. M.R. Garey, D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-completeness. W.H. Freeman, San Francisco, 1979.

    Google Scholar 

  3. P. Groche, G. v. Breitenbach, M. Jöckel, A. Zettler. New tooling concepts for the future roll forming applications. ICIT Conference. Bled, Yugoslvia, 2003.

    Google Scholar 

  4. D. Gross, W. Hauger, W. Schnell. Technische Mechanik, Bd. 2: Elastostatik. Springer, Berlin, 2005.

    Google Scholar 

  5. O.S. Hakimi. Optimal Locations of Switching Centers and Medians of a Graph. Operations Research 12:450–459, 1964.

    Article  MATH  Google Scholar 

  6. M. Hintermüller, K. Ito, K. Kunisch. The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13: 865–888, 2002.

    Article  MathSciNet  Google Scholar 

  7. J.-M. Ho, D.T. Lee, C.-H. Chang, C.K. Wong. Minimum diameter spanning trees and related problems. SIAM J. Computing 20: 987–997, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  8. V. Hubka, E. W. Eder. Theorie technischer Systeme-Grundlagen einer wissenschaftlichen Konstruktionslehre. Springer-Verlag, Hamburg, 1984.

    Google Scholar 

  9. ILOG CPLEX Division. Suite 279, 930 Tahoe Blvd., Bldg 802, Incline Village, NV 89451, USA. Information available via WWW at URL http://www.cplex.com.

    Google Scholar 

  10. T. Sauer, M. Wäldele, H. Birkhofer. Providing Examples for Students and Designers. Proceedings of the NordDesign 2004 Conference, 340–349. Tampere, Finnland.

    Google Scholar 

  11. A. Schrijver. Theory of Linear and Integer Programming. Wiley, Chichester, 1986.

    MATH  Google Scholar 

  12. G. Specht, C. Beckmann. F&E Management, Schäffer Poeschel Verlag. Stuttgart, 1996.

    Google Scholar 

  13. N.P. Suh. Axiomatic Design-Advances and Applications. Oxford University Press, New York, 2001.

    Google Scholar 

  14. M. Ulbrich. Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13: 805–842, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Ulbrich. On the Superlinear Local Convergence of a Filter-SQP Method. Mathematical Programming 100:217–245, 2004.

    MATH  MathSciNet  Google Scholar 

  16. S. Ulbrich, M. Ulbrich, L.N. Vincente. A Globally Convergent Primal-Dual Interior Point Filter Method for Nonconvex Nonlinear Programming. Mathematical Programming 100:379–410, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Wächter, L.T. Biegler. On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming. To appear in Mathematical Programming, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Birkhofer, H. et al. (2006). Optimization of Sheet Metal Products. In: Haasis, HD., Kopfer, H., Schönberger, J. (eds) Operations Research Proceedings 2005. Operations Research Proceedings, vol 2005. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32539-5_52

Download citation

Publish with us

Policies and ethics