Abstract
Intraoperative movement of brain tissue is a central problem in the context of accuracy of image-guided neurosurgery. One of the strategies compensating for this issue is to perform a physically-based biomechanical simulation of the occurring phenomenon. Thereby, the computational expense is of big concern. In this paper, we present a parallel framework for modeling the intraoperative brain deformation. Within this system, it is possible to perform simulations on high resolution meshes even consisting of millions of elements. Experiments with the implemented algorithm using a cluster equipped with eight processors showed a great improvement in computation time in comparison to a standard single processor implementation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rueckert D, Sonoda LI, C Hayes DLGHill, Leach MO, Hawkes DJ. Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images. IEEE Trans Med Img 1999;18(8):712–721.
Miga M, Paulsen K, Hoopes P, Kennedy F, Hartov A, Roberts D. In Vivo Quantification of a Homogeneous Brain Deformation Model for Updating Preoperative Images during Surgery. IEEE Trans Biomed Eng 2000;47(2):266–273.
Ferrant M, Nabavi A, Macq B, Black PM, Jolesz FA, Kikinis R, et al. Serial Registration of Intraoperative MR Images of the Brain. Med Image Anal 2002;6(4):337–359.
Bro-Nielsen M. Surgery Simulation Using Fast Finite Elements. In: Proc. Visualization in Biomedical Computing. No. 1131 in Lect Notes Comp Sc. Springer; 1996. p. 529–534.
Hansen KV, Larsen OV. Using Region-of-Interest Based Finite Element Modeling for Brain-Surgery Simulation. In: Proc. MICCAI. Springer; 1998. p. 305–316.
Warfield S, Talos F, Tei A, Bharatha A, Nabavi A, Ferrant M, et al. Real-Time Registration of Volumetric Brain MRI by Biomechanical Simulation of Deformation during Image Guided Neurosurgery. Comput Visual Sci 2002;5:3–11.
Soza G, Grosso R, Hastreiter P, Labsik U, Nimsky Ch, Fahlbusch R, et al. Fast and Adaptive Finite Element Approach for Modeling Brain Shift. Comput Aided Surg 2004;8(5):241–246.
Soza G, Grosso R, Nimsky Ch, Greiner G, Hastreiter P. Estimating Mechanical Brain Tissue Properties with Simulation and Registration. In: Proc. MICCAI. vol. 2. Lect Notes Comput Sc, Springer; 2004. p. 276–283.
Karypis G, Kumar V. Multilevel k-Way Partitioning Scheme for Irregular Graphs. J Parallel Distr Comp 1998;48(1):96–129.
Balay S, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, et al. PETSc Users Manual. Argonne National Laboratory; 2004.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Soza, G., Grosso, R., Nimsky, C., Greiner, G., Hastreiter, P. (2005). High Performance Implementation for Simulation of Brain Deformation. In: Meinzer, HP., Handels, H., Horsch, A., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2005. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26431-0_93
Download citation
DOI: https://doi.org/10.1007/3-540-26431-0_93
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25052-4
Online ISBN: 978-3-540-26431-6
eBook Packages: Computer Science and Engineering (German Language)