On the languages accepted by finite reversible automata | SpringerLink
Skip to main content

On the languages accepted by finite reversible automata

  • Formal Languages And Automata
  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1987)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 267))

Included in the following conference series:

Abstract

A reversible automaton is a finite (possibly incomplete) automaton in which each letter induces a partial one-to-one map from the set of states into itself. We give four non-trivial characterizations of the languages accepted by a reversible automaton equipped with a set of initial and final states and we show that one can effectively decide whether a given rational (or regular) language can be accepted by a reversible automaton. The first characterization gives a description of the subsets of the free group accepted by a reversible automaton that is somewhat reminiscent of Kleene's theorem. The second characterization is more combinatorial in nature. The decidability follows from the third — algebraic — characterization. The last and somewhat unexpected characterization is a topological description of our languages that solves an open problem about the finite-group topology of the free monoid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Angluin, Inference of reversible languages, Journal of the Association for Computing Machinery 29 (1982) 741–765.

    Google Scholar 

  2. C.J. Ash, Finite semigroups with commuting idempotents, J. Austral. Math. Soc. Series A, to appear.

    Google Scholar 

  3. J.C. Birget, S.W. Margolis and J. Rhodes, Finite semigroups whose idempotents commute or form a subsemigroup, Proceedings of the Chico Conference on Semigroups (1986), to appear.

    Google Scholar 

  4. S. Eilenberg, Automata, Languages and Machines, Vol B, Academic Press, New-York (1976).

    Google Scholar 

  5. M. Hall Jr, A topology for free groups and related groups, Ann. Math. 52 (1950) 127–139.

    Google Scholar 

  6. T.E. Hall, Biprefix codes, inverse semigroups and syntactic monoids of injective automata, Theoretical Computer Science.

    Google Scholar 

  7. G. Lallement, Semigroups and Combinatorial Applications, Wiley, New-York (1979).

    Google Scholar 

  8. M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics 17, Addison Wesley, New-York (1983).

    Google Scholar 

  9. R. McNaughton, The loop complexity of pure-group events. Inf. Control 11 (1967) 167–176.

    Google Scholar 

  10. S.W. Margolis and J.E. Pin, Languages and inverse semigroups, 11th ICALP, Lecture Notes in Computer Science 199, Springer, Berlin (1985) 285–299.

    Google Scholar 

  11. S.W. Margolis and J.E. Pin, Finite inverse semigroups, varieties and languages, Journal of Algebra, to appear.

    Google Scholar 

  12. J.E. Pin, Finite group topology and p-adic topology for free monoids, 12th ICALP, Lecture Notes in Computer Science 194 (1985) 445–455.

    Google Scholar 

  13. J.E. Pin, Varieties of formal languages, Masson, Paris (1984), North Oxford Academic, London and Plenum, New-York (1986).

    Google Scholar 

  14. Ch. Reutenauer, Une topologie du monoide libre, Semigroup Forum 18, (1979), 33–49.

    Google Scholar 

  15. Ch. Reutenauer, Sur mon article "une topologie du monoide libre", Semigroup Forum 22, (1981), 93–95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thomas Ottmann

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pin, J.E. (1987). On the languages accepted by finite reversible automata. In: Ottmann, T. (eds) Automata, Languages and Programming. ICALP 1987. Lecture Notes in Computer Science, vol 267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-18088-5_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-18088-5_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18088-3

  • Online ISBN: 978-3-540-47747-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics