Abstract
We study perfect error correcting codes in which the codewords are protected by Hamming spheres of distinct protective radii. These codes have been introduced by Cohen, Montaron and Frankl [3, 4, 10].
We are interested in a special class of these codes, namely the strongly tactical ones, introduced in [6]. There are relations with uniformly packed codes [11]. We give conditions on the existence of strongly tactical codes, in particular a generalization of Lloyd's Theorem, and use these conditions to prove some characterization theorems. In particular, we shall characterize the punctured Golay codes and an infinite class of strongly tactical codes.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. Bremner, R. Calderbank: Two-Weight Ternary Codes and the Equation y2=4×3α+13; J. Numb. Theory, 16 (1983), 212–234.
R. Calderbank: On Uniformly Packed [n,n-k,4] Codes over GF(q) and a Class of Caps in PG(k-1,q); J. London Math. Soc. (2), 26 (1982), 365–384.
G. Cohen, B. Montaron: Empilements parfaits de boules dans les espaces vectoriels binaires; C. R. Acad. Sci. Paris Sér A — B, 288 (1979), no 11, A 579–A 582.
G. Cohen, P. Frankl: On Generalized Perfect Codes and Steiner Systems; Ann. Discrete Math., 18 (1983), 197–200.
D.M. Cvetkovič, J. H. van Lint: An Elementary Proof of Lloyd's Theorem; Nederl. Akad. Wetensch. Indag. Math., 80 (1977), 6–10.
M. Gundlach: On Codes with Distinct Protective Radii; Atti Sem. Mat. Fis. Univ. Modena, 32 (1983), 379–396.
M. Gundlach: Lloyd's Theorem for Strongly Tactical Codes; Manuscript (1985).
J. H. van Lint: Introduction to Coding Theory; Springer, Berlin — Heidelberg — New York, 1982.
F. J. MacWilliams, N. J. A. Sloane: The Theory of Error-Correcting Codes; North-Holland, Amsterdam — New York — Oxford, 1977.
B. Montaron, G. Cohen: Codes parfaits binaires à plusieurs rayons, Rev. CETHEDEC Cahier, 1979, no 2, 35–58.
H. C. A. van Tilborg: Uniformly Packed Codes; Thesis, Eindhoven Univ. of Technology, 1976.
G. V. Zaitsev, V. A. Zinovjev, N. V. Semakov: Interrelation of Preparata and Hamming Codes and Extension of Hamming Codes to New Double-Error-Correcting Codes; Proc. 2nd Int. Symp. Inform. Theory (Akadémiai Kiadó, Budapest, 1973), 257–263.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1986 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gundlach, M. (1986). On strongly tactical codes. In: Calmet, J. (eds) Algebraic Algorithms and Error-Correcting Codes. AAECC 1985. Lecture Notes in Computer Science, vol 229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-16776-5_705
Download citation
DOI: https://doi.org/10.1007/3-540-16776-5_705
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-16776-1
Online ISBN: 978-3-540-39855-4
eBook Packages: Springer Book Archive