On strongly tactical codes | SpringerLink
Skip to main content

On strongly tactical codes

  • Conference paper
  • First Online:
Algebraic Algorithms and Error-Correcting Codes (AAECC 1985)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 229))

  • 165 Accesses

Abstract

We study perfect error correcting codes in which the codewords are protected by Hamming spheres of distinct protective radii. These codes have been introduced by Cohen, Montaron and Frankl [3, 4, 10].

We are interested in a special class of these codes, namely the strongly tactical ones, introduced in [6]. There are relations with uniformly packed codes [11]. We give conditions on the existence of strongly tactical codes, in particular a generalization of Lloyd's Theorem, and use these conditions to prove some characterization theorems. In particular, we shall characterize the punctured Golay codes and an infinite class of strongly tactical codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Bremner, R. Calderbank: Two-Weight Ternary Codes and the Equation y2=4×3α+13; J. Numb. Theory, 16 (1983), 212–234.

    Google Scholar 

  2. R. Calderbank: On Uniformly Packed [n,n-k,4] Codes over GF(q) and a Class of Caps in PG(k-1,q); J. London Math. Soc. (2), 26 (1982), 365–384.

    Google Scholar 

  3. G. Cohen, B. Montaron: Empilements parfaits de boules dans les espaces vectoriels binaires; C. R. Acad. Sci. Paris Sér A — B, 288 (1979), no 11, A 579–A 582.

    Google Scholar 

  4. G. Cohen, P. Frankl: On Generalized Perfect Codes and Steiner Systems; Ann. Discrete Math., 18 (1983), 197–200.

    Google Scholar 

  5. D.M. Cvetkovič, J. H. van Lint: An Elementary Proof of Lloyd's Theorem; Nederl. Akad. Wetensch. Indag. Math., 80 (1977), 6–10.

    Google Scholar 

  6. M. Gundlach: On Codes with Distinct Protective Radii; Atti Sem. Mat. Fis. Univ. Modena, 32 (1983), 379–396.

    Google Scholar 

  7. M. Gundlach: Lloyd's Theorem for Strongly Tactical Codes; Manuscript (1985).

    Google Scholar 

  8. J. H. van Lint: Introduction to Coding Theory; Springer, Berlin — Heidelberg — New York, 1982.

    Google Scholar 

  9. F. J. MacWilliams, N. J. A. Sloane: The Theory of Error-Correcting Codes; North-Holland, Amsterdam — New York — Oxford, 1977.

    Google Scholar 

  10. B. Montaron, G. Cohen: Codes parfaits binaires à plusieurs rayons, Rev. CETHEDEC Cahier, 1979, no 2, 35–58.

    Google Scholar 

  11. H. C. A. van Tilborg: Uniformly Packed Codes; Thesis, Eindhoven Univ. of Technology, 1976.

    Google Scholar 

  12. G. V. Zaitsev, V. A. Zinovjev, N. V. Semakov: Interrelation of Preparata and Hamming Codes and Extension of Hamming Codes to New Double-Error-Correcting Codes; Proc. 2nd Int. Symp. Inform. Theory (Akadémiai Kiadó, Budapest, 1973), 257–263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Calmet

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gundlach, M. (1986). On strongly tactical codes. In: Calmet, J. (eds) Algebraic Algorithms and Error-Correcting Codes. AAECC 1985. Lecture Notes in Computer Science, vol 229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-16776-5_705

Download citation

  • DOI: https://doi.org/10.1007/3-540-16776-5_705

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16776-1

  • Online ISBN: 978-3-540-39855-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics