Abstract
First, we prove that if the language Sym = {w w R /w ε {a,b}*} belongs to F σ(L), the smallest substitution closed full AFL generated by the family L, then there exists a language L ε L such that Sym ε C(L). We prove that this property does not hold for C 1={anbn/n ≥0 }, by characterizing the languages \(L \subseteq C_1 \) such that C 1 ε C(L).
Preview
Unable to display preview. Download preview PDF.
Références
J.M. Autebert, J. Beauquier et L. Boasson, "Contribution à l'étude des cônes minimaux", C.R. Acad. Sc. 287 (1978), 353–355.
J. Beauquier, "Substitutions de langages linéaires et à compteur", 1978, soumis à J. Comp. Syst. Sc..
J. Berstel, "Transductions and Context-free languages", Teubner Verlag, 1979.
J. Berstel et L. Boasson, "Une suite décroissante de cônes rationnels", in Loeckx (Ed.), Automata, languages and programming, 2nd Colloquium, Saarbrücken, Springer Verlag (1974), 383–397.
J.L. Durieux, "Sur l'image, par une transduction rationnelle, des mots sur une lettre", RAIRO Informatique Théorique (1975), 25–37.
S. Ginsburg et E.H. Spanier, "On incomparable abstract families of languages (AFL)", J. Comp. Syst. Sc. 9 (1974), 88–108.
J. Goldstine, "Substitution and bounded languages", J. Comp. Syst. Sc. 6 (1972), 9–29.
J. Goldstine, "Bounded AFL's", J. Comp. Syst. Sc. 12 (1976), 399–419.
S. Greibach, "Chains of full AFL's", Math. Syst. Theory 4 (1970), 231–242.
S. Greibach, "Simple Syntactic Operators on full semi-AFL's", J. Comp. Syst. Sc. 6 (1972), 30–76.
M. Latteux, "Cônes rationnels commutativement clos", RAIRO Informatique Théorique 11 (1977), 29–51.
M. Latteux, "Cônes rationnels commutatifs", 1977, à paraître dans J. Comp. Syst. Sc.
M. Latteux, "Languages commutatifs", Thèse de Doctorat d'Etat, Université de Lille I, 1978.
M. Nivat, "Transductions des languages de Chomsky", Annales de l'Institut Fourier 18 (1968), 339–456.
Editor information
Rights and permissions
Copyright information
© 1979 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Latteux, M. (1979). Sur deux langages linéaires. In: Weihrauch, K. (eds) Theoretical Computer Science 4th GI Conference. Lecture Notes in Computer Science, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-09118-1_20
Download citation
DOI: https://doi.org/10.1007/3-540-09118-1_20
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-09118-9
Online ISBN: 978-3-540-35517-5
eBook Packages: Springer Book Archive