Abstract
Interaction nets are a graphical paradigm of computation based on graph rewriting. They have proven to be both useful and enlightening in the encoding of linear logic and the λ-calculus. This paper offers new techniques for the theory of interaction nets, with applications to the encoding of specific strategies in the λ-calculus. In particular we show how to recover the usual call-by-value and call-by-name reduction strategies from general encodings.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abramsky, S.: Computational Interpretations of Linear Logic. Theoretical Comput. Sci. 111, 3–57 (1993)
Fernández, M., Mackie, I.: Interaction nets and term rewriting systems. Theoretical Computer Science 190(1), 3–39 (1998)
Fernández, M., Mackie, I.: A calculus for interaction nets. In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 170–187. Springer, Heidelberg (1999)
Fernández, M., Mackie, I.: Closed reductions in the λ-calculus. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 220–234. Springer, Heidelberg (1999)
Fernández, M., Mackie, I.: Packing interaction nets: Applications to linear logic and the lambda calculus. In: Frias, M., Heintz, J. (eds.) Proceedings of the 5th Argentinian Workshop of Theoretical Computer Science (WAIT 2001), Anales JAIIO, vol. 30, pp. 91–107 (September 2001)
Girard, J.-Y.: Linear Logic. Theoretical Computer Science 50(1), 1–102 (1987)
Gonthier, G., Abadi, M., Lévy, J.-J.: The geometry of optimal lambda reduction. In: Proceedings of the 19th ACM Symposium on Principles of Programming Languages (POPL 1992), pp. 15–26. ACM Press, New York (1992)
Gonthier, G., Abadi, M., Lévy, J.-J.: Linear logic without boxes. In: Proceedings of the 7th IEEE Symposium on Logic in Computer Science (LICS 1992), pp. 223–234. IEEE Press, Los Alamitos (1992)
Lafont, Y.: Interaction nets. In: Proceedings of the 17th ACM Symposium on Principles of Programming Languages (POPL 1990), pp. 95–108. ACM Press, New York (1990)
Lafont, Y.: From proof nets to interaction nets. In: Girard, J.-Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic. London Mathematical Society Lecture Note Series, vol. 222, pp. 225–247. Cambridge University Press, Cambridge (1995)
Lafont, Y.: Interaction combinators. Information and Computation 137(1), 69–101 (1997)
Lamping, J.: An algorithm for optimal lambda calculus reduction. In: Proceedings of the 17th ACM Symposium on Principles of Programming Languages (POPL 1990), pp. 16–30. ACM Press, New York (1990)
Lévy, J.-J.: Réductions Correctes et Optimales dans le Lambda-Calcul. Thèse d’état, Université Paris VII (January 1978)
Lippi, S.: λ-calculus left reduction with interaction nets. Mathematical Structures in Computer Science 12(6) (2002)
Lippi, S.: Théorie et pratique des réseaux d’interaction. PhD thesis, Université de la Méditerranée (June 2002)
Mackie, I.: The Geometry of Implementation. PhD thesis, Department of Computing, Imperial College of Science, Technology and Medicine (September 1994)
Mackie, I.: YALE: Yet another lambda evaluator based on interaction nets. In: Proceedings of the 3rd International Conference on Functional Programming (ICFP 1998), pp. 117–128. ACM Press, New York (1998)
Mackie, I.: Interaction nets for linear logic. Theoretical Computer Science 247(1), 83–140 (2000)
Mackie, I.: Efficient λ-evaluation with interaction nets. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 155–169. Springer, Heidelberg (2004)
Mackie, I., Pinto, J.S.: Encoding linear logic with interaction combinators. Information and Computation 176(2), 153–186 (2002)
Peyton Jones, S.L.: The Implementation of Functional Programming Languages. Prentice Hall International, Englewood Cliffs (1987)
Pinto, J.S.: Parallel Implementation with Linear Logic. PhD thesis, École Polytechnique (February 2001)
Pinto, J.S.: Weak reduction and garbage collection in interaction nets. In: Proceedings of the 3rd International Workshop on Reduction Strategies in Rewriting and Programming, Valencia, Spain (2003)
Plasmeijer, R., Eekelen, M.: Functional Programming and Parallel Graph Rewriting. Addison-Wesley, Reading (1993)
Sinot, F.-R.: Call-by-name and call-by-value as token-passing interaction nets. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 386–400. Springer, Heidelberg (2005)
Sinot, F.-R.: Token-passing nets: Call-by-need for free. Electronic Notes in Theoretical Computer Science 135(5), 129–139 (2006)
Wadsworth, C.P.: Semantics and Pragmatics of the Lambda-Calculus. PhD thesis, Oxford University (1971)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mackie, I. (2006). Encoding Strategies in the Lambda Calculus with Interaction Nets. In: Butterfield, A., Grelck, C., Huch, F. (eds) Implementation and Application of Functional Languages. IFL 2005. Lecture Notes in Computer Science, vol 4015. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11964681_2
Download citation
DOI: https://doi.org/10.1007/11964681_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69174-7
Online ISBN: 978-3-540-69175-4
eBook Packages: Computer ScienceComputer Science (R0)