Abstract
This chapter presents a principled way of formulating models for automatic local feature selection in object class recognition when there is little supervised data. Moreover, it discusses how one could formulate sensible spatial image context models using a conditional random field for integrating local features and segmentation cues (superpixels). By adopting sparse kernel methods and Bayesian model selection and data association, the proposed model identifies the most relevant sets of local features for recognizing object classes, achieves performance comparable to the fully supervised setting, and consistently outperforms existing methods for image classification.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, S., Roth, D.: Learning a sparse representation for object detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 113–127. Springer, Heidelberg (2002)
Andrews, S., Tsochantaridis, I., Hofmann, T.: Multiple instance learning with generalized support vector machines. In: Proceedings of the AAAI National Conference on Artificial Intelligence (2002)
Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. John Wiley and Sons, Chichester (2000)
Carbonetto, P., de Freitas, N., Gustafson, P., Thompson, N.: Bayesian feature weighting for unsupervised learning, with application to object recognition. In: Proceedings of the Workshop on Artificial Intelligence and Statistics (2003)
Carbonetto, P., de Freitas, N., Barnard, K.: A Statistical model for general contextual object recognition. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021. Springer, Heidelberg (2004)
Celeux, G., Hurn, M., Robert, C.P.: Computational and inferential difficulties with mixture posterior distributions. Journal of the American Statistical Association 95, 957–970 (2000)
Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Bülthoff, H.H., Lee, S.-W., Poggio, T.A., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 273–281. Springer, Heidelberg (2002)
Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance learning with axis-parallel rectangles. Artificial Intelligence 89(1), 31–71 (1997)
Dorkó, G., Schmid, C.: Selection of scale invariant neighborhoods for object class recognition. In: Proceedings of the International Conference on Computer Vision (2003)
Duygulu, P., Barnard, K., de Freitas, N., Forsyth, D.A.: Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002)
Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2003)
Hamze, F., de Freitas, N.: From fields to trees. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence (2004)
Hendrik, K., de Freitas, N.: Learning about individuals from group statistics. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence (2005)
Kadir, T., Brady, M.: Scale, saliency and image description. International Journal of Computer Vision 45(2), 83–105 (2001)
Kück, H., Carbonetto, P., de Freitas, N.: A Constrained semi-supervised learning approach to data association. In: Proceedings of the European Conference on Computer Vision (2004)
Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields. In: Proceedings of the International Conference on Machine Learning (2001)
Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2005)
Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30(2) (1998)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
McFadden, D.: A Method of simulated moments for estimation of discrete response models without numerical integration. Econometrica 57, 995–1026 (1989)
Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proceedings of the International Conference on Computer Vision (2001)
Mikolajczyk, K., Schmid, C., Zisserman, A.: Human detection based on a probabilistic assembly of robust part detectors. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 69–82. Springer, Heidelberg (2004)
Mikolajczyk, K., Schmid, C.: A Performance evaluation of local descriptors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2003)
Mikolajczyk, K., Schmid, C.: Selection of scale-invariant parts for object class recognition. In: Proceedings of the International Conference on Computer Vision (2001)
Miller, T., Berg, A.C., Edwards, J., Maire, M., White, R., Teh, Y.W., Learned-Miller, E., Forsyth, D.A.: Faces and names in the news. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2004)
Opelt, A., Fussenegger, M., Pinz, A., Auer, P.: Weak hypotheses and boosting for generic object detection and recognition. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 71–84. Springer, Heidelberg (2004)
Ren, X., Malik, J.: Learning a classification model for segmentation. In: Proceedings of the International Conference on Computer Vision (2003)
Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2005)
Shi, J., Malik, J.: Normalized cuts and image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (1997)
Tham, S.S., Doucet, A., Kotagiri, R.: Sparse Bayesian learning for regression and classification using Markov Chain Monte Carlo. In: Proceedings of the International Conference on Machine Learning (2002)
Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1, 211–244 (2001)
Torralba, A., Murphy, K.P., Freeman, W.T., Rubin, M.A.: Context-based vision system for place and object recognition. In: Proceedings of the International Conference on Computer Vision (2003)
Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)
Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and harmonic functions. In: Proceedings of the International Conference on Machine Learning (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Carbonetto, P., Dorkó, G., Schmid, C., Kück, H., de Freitas, N. (2006). A Semi-supervised Learning Approach to Object Recognition with Spatial Integration of Local Features and Segmentation Cues. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds) Toward Category-Level Object Recognition. Lecture Notes in Computer Science, vol 4170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11957959_15
Download citation
DOI: https://doi.org/10.1007/11957959_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68794-8
Online ISBN: 978-3-540-68795-5
eBook Packages: Computer ScienceComputer Science (R0)