Two-Stage Classifier for Diagnosis of Hypertension Type | SpringerLink
Skip to main content

Two-Stage Classifier for Diagnosis of Hypertension Type

  • Conference paper
Biological and Medical Data Analysis (ISBMDA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4345))

Included in the following conference series:

  • 968 Accesses

Abstract

The inductive learning approach could be immensely useful as the method generating effective classifiers. This paper presents idea of constructing two-stage classifier for diagnosis of the type of hypertension (essential hypertension and five type of secondary one: fibroplastic renal artery stenosis, atheromatous renal artery stenosis, Conn’s syndrome, renal cystic disease and pheochromocystoma). The first step decides if patient suffers from essential hypertension or secondary one. This decision is made on the base on the decision of classifier obtained by boosted version of additive tree algorithm. The second step of classification decides which type of secondary hypertension patient is suffering from. The second step of classifier makes its own decision using human expert rules. The decisions of these classifiers are made only on base on blood pressure, general information and basis biochemical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blinowska, A., et al.: Bayesian Statistics as Applied to Hypertension Diagnosis. IEEE Trans. on Biomed. Eng. 38(7), 699–706 (1991)

    Article  Google Scholar 

  2. Burduk, R.: Case of Fuzzy Loss Function in Multistage Recognition Algorithm. Journal of Medical Informatics & Technologies 5, MI 107-112 (2003)

    Google Scholar 

  3. Cohen, W.W.: Fast Effective Rule Induction. In: Proc. of the 12th International Conference on Machine Learning, Tahoe City, pp. 115–123

    Google Scholar 

  4. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and application to boosting. Journal of Computer and System Science 55(1), 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: Proceedings of the International Conference on Machine Learning, pp. 148–156 (1996)

    Google Scholar 

  6. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer, New York (2001)

    MATH  Google Scholar 

  7. Jain, A.K., Duin, P.W., Mao, J.: Statistical Pattern Recognition: A Review. IEEE Transaction on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)

    Article  Google Scholar 

  8. Meir, R., Rätsch, G.: An introduction to boosting and leveraging. In: Mendelson, S., Smola, A.J. (eds.) Advanced Lectures on Machine Learning. LNCS (LNAI), vol. 2600, pp. 119–184. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Melville, P., Mooney, R.: Constructing diverse classifier ensembles using artificial training examples. In: Proc. of 18th Intl. Joint Conf. on Artificial Intelligence, Acapulco, Mexico, August 2003, pp. 505–510 (2003)

    Google Scholar 

  10. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)

    MATH  Google Scholar 

  11. Opitz, D., Maclin, R.: Popular Ensemble Methods: An Empirical Study. Journal of Artificial Intelligence Research 11, 169–198 (1999)

    MATH  Google Scholar 

  12. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  13. Quinlan, J.R.: Bagging, Boosting, and C4.5. In: Proc. AAAI 1996 and IAAI 1996 conferences, Portland, Oregon, August 4-8, 1996, vol. 1, pp. 230–725 (1996)

    Google Scholar 

  14. Schapire, R.E.: The boosting approach to machine learning: An overview. In: Proc. of MSRI Workshop on Nonlinear Estimation and Classification, Berkeley, CA (2001)

    Google Scholar 

  15. Shapire, R.E.: The Strength of Weak Learnability. Machine Learning 5, 197–227 (1990)

    Google Scholar 

  16. Schapire, R.E.: A Brief Introduction to Boosting. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (1999)

    Google Scholar 

  17. Witten, I.H., Frank, E.: Data Mining. In: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann Pub., San Francisco (2000)

    Google Scholar 

  18. Wozniak, M.: Boosted decision trees for diagnosis type of hypertension. In: Oliveira, J.L., Maojo, V., Martín-Sánchez, F., Pereira, A.S. (eds.) ISBMDA 2005. LNCS (LNBI), vol. 3745, pp. 223–230. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wozniak, M. (2006). Two-Stage Classifier for Diagnosis of Hypertension Type. In: Maglaveras, N., Chouvarda, I., Koutkias, V., Brause, R. (eds) Biological and Medical Data Analysis. ISBMDA 2006. Lecture Notes in Computer Science(), vol 4345. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11946465_39

Download citation

  • DOI: https://doi.org/10.1007/11946465_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68063-5

  • Online ISBN: 978-3-540-68065-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics