Improved Approximation Algorithms for Maximum Resource Bin Packing and Lazy Bin Covering Problems | SpringerLink
Skip to main content

Improved Approximation Algorithms for Maximum Resource Bin Packing and Lazy Bin Covering Problems

  • Conference paper
Algorithms and Computation (ISAAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4288))

Included in the following conference series:

Abstract

In this paper, we study two variants of the bin packing /covering problems called Maximum Resource Bin Packing (MRBP) and Lazy Bin Covering (LBC) problems, and present new approximation algorithms for each of them. For the offline MRBP problem, the previous best known approximation ratio is \(\frac{6}{5}=1.2\), achieved by the classical First-Fit-Increasing (FFI) algorithm [1]. In this paper, we give a new FFI-type algorithm with an approximation ratio of \(\frac{80}{71}\approx 1.12676\). For the offline LBC problem, it has been shown in [2] that the classical First-Fit-Decreasing (FFD) algorithm achieves an approximation ratio of \(\frac{71}{60}\approx 1.18333\). In this paper, we present a new FFD-type algorithm with an approximation ratio of \(\frac{17}{15}\approx 1.13333\). Both algorithms are simple, run in near linear time (i.e., O(n logn)), and therefore are practical.

The research of this work was supported in part by an NSF CARRER Award CCF-0546509.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boyar, J., Epstein, L., Favrholdt, L.M., Kohrt, J.S., Larsen, K.S., Pedersen, M.M., Wøhlk, S.: The maximum resource bin packing problem. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 397–408. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Lin, M., Yang, Y., Xu, J.: On lazy bin covering and packing problems. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, Springer, Heidelberg (2006)

    Google Scholar 

  3. Garey, M.R., Graham, R.L., Johnson, D.S.: Resource constrained scheduling as generalized bin packing. J. Comb. Theory, Ser. A 21, 257–298 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  4. Csirik, J.: The parametric behavior of the first-fit decreasing bin packing algorithm. J. Algorithms 15, 1–28 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Csirik, J., Johnson, D.S.: Bounded space on-line bin packing: Best is better than first. Algorithmica 31, 115–138 (2001)

    MATH  MathSciNet  Google Scholar 

  6. Johnson, D.S., Garey, M.R.: A 71/60 theorem for bin packing. J. Complexity 1, 65–106 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Galambos, G., Woeginger, G.: Repacking helps in bounded space on-line bin-packing. Computing 49, 329–338 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Woeginger, G.J.: Improved space for bounded-space, on-line bin-packing. SIAM J. Discrete Math. 6, 575–581 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Shachnai, H., Tamir, T.: On two class-constrained versions of the multiple knapsack problem. Algorithmica 29, 442–467 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Friesen, D.K., Langston, M.A.: Analysis of a compound bin packing algorithm. SIAM J. Discrete Math. 4, 61–79 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bar-Noy, A., Ladner, R.E., Tamir, T.: Windows scheduling as a restricted version of bin packing. In: SODA 2004, pp. 224–233 (2004)

    Google Scholar 

  12. Csirik, J., Kenyon, C., Johnson, D.S.: Better approximation algorithms for bin covering. In: SODA, pp. 557–566 (2001)

    Google Scholar 

  13. Assmann, S.F., Johnson, D.S., Kleitman, D.J., Leung, J.Y.T.: On a dual version of the one-dimensional bin packing problem. J. Algorithms 5, 502–525 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, M., Yang, Y., Xu, J. (2006). Improved Approximation Algorithms for Maximum Resource Bin Packing and Lazy Bin Covering Problems. In: Asano, T. (eds) Algorithms and Computation. ISAAC 2006. Lecture Notes in Computer Science, vol 4288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11940128_57

Download citation

  • DOI: https://doi.org/10.1007/11940128_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49694-6

  • Online ISBN: 978-3-540-49696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics