Analyzing Disturbed Diffusion on Networks | SpringerLink
Skip to main content

Analyzing Disturbed Diffusion on Networks

  • Conference paper
Algorithms and Computation (ISAAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4288))

Included in the following conference series:

Abstract

This work provides the first detailed investigation of the disturbed diffusion scheme FOS/C introduced in [17] as a type of diffusion distance measure within a graph partitioning framework related to Lloyd’s k-means algorithm [14]. After outlining connections to distance measures proposed in machine learning, we show that FOS/C can be related to random walks despite its disturbance. Its convergence properties regarding load distribution and edge flow characterization are examined on two different graph classes, namely torus graphs and distance-transitive graphs (including hypercubes), representatives of which are frequently used as interconnection networks.

This work is partially supported by German Science Foundation (DFG) Research Training Group GK-693 of the Paderborn Institute for Scientific Computation (PaSCo) and by Integrated Project IST-15964 ”Algorithmic Principles for Building Efficient Overlay Computers” (AEOLUS) of the European Union.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adámek, J.: Foundations of Coding. J. Wiley & Sons, Chichester (1991)

    MATH  Google Scholar 

  2. Alon, N., Spencer, J.H.: The Probabilistic Method, 2nd edn. J. Wiley & Sons, Chichester (2000)

    Book  MATH  Google Scholar 

  3. Biggs, N.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  4. Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Nadler, B., Warner, F., Zucker, S.W.: Geometric diffusions as a tool for harmonic analysis and structure definition of data. Parts I and II. Proc. Natl. Academy of Sciences 102(21), 7426–7437 (2005)

    Article  Google Scholar 

  5. Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. Parallel and Distributed Computing 7, 279–301 (1989)

    Article  Google Scholar 

  6. Diekmann, R., Frommer, A., Monien, B.: Efficient schemes for nearest neighbor load balancing. Parallel Computing 25(7), 789–812 (1999)

    Article  MathSciNet  Google Scholar 

  7. Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. Math. Assoc. of America (1984)

    Google Scholar 

  8. Ellis, R.B.: Discrete green’s functions for products of regular graphs. In: AMS National Conference, invited talk, special session on Graph Theory (2001)

    Google Scholar 

  9. Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes, 2nd edn. Oxford University Press, Oxford (1992)

    Google Scholar 

  10. Gross, J.L., Yellen, J. (eds.): Handbook of Graph Theory. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  11. Hu, Y.F., Blake, R.F.: An improved diffusion algorithm for dynamic load balancing. Parallel Computing 25(4), 417–444 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, Heidelberg (1976)

    MATH  Google Scholar 

  13. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers, San Francisco (1992)

    MATH  Google Scholar 

  14. Lloyd, S.P.: Least squares quantization in PCM. IEEE Transactions on Information Theory 28(2), 129–136 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lovász, L.: Random walks on graphs: A survey. Combinatorics, Paul Erdös is Eighty 2, 1–46 (1993)

    Google Scholar 

  16. Meila, M., Shi, J.: A random walks view of spectral segmentation. In: Eighth International Workshop on Artificial Intelligence and Statistics (AISTATS) (2001)

    Google Scholar 

  17. Meyerhenke, H., Monien, B., Schamberger, S.: Accelerating shape optimizing load balancing for parallel FEM simulations by algebraic multigrid. In: Proc. 20th IEEE Intl. Parallel and Distributed Processing Symp (IPDPS 2006), p. 57 (CD). IEEE, Los Alamitos (2006)

    Google Scholar 

  18. Nadler, B., Lafon, S., Coifman, R.R., Kevrekidis, I.G.: Diffusion maps, spectral clustering and eigenfunctions of fokker-planck operators. In: NIPS (2005)

    Google Scholar 

  19. Saerens, M., Dupont, P., Fouss, F., Yen, L.: The principal components analysis of a graph, and its relationships to spectral clustering. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 371–383. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Schamberger, S.: A shape optimizing load distribution heuristic for parallel adaptive FEM computations. In: Malyshkin, V.E. (ed.) PaCT 2005. LNCS, vol. 3606, pp. 263–277. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain. Technical Report CMU-CS-94-125, Carnegie Mellon University (1994)

    Google Scholar 

  22. The BlueGene/L Team. An overview of the BlueGene/L supercomputer. In: Proc. ACM/IEEE Conf. on Supercomputing, pp. 1–22 (2002)

    Google Scholar 

  23. Tishby, N., Slonim, N.: Data clustering by markovian relaxation and the information bottleneck method. In: NIPS, pp. 640–646 (2000)

    Google Scholar 

  24. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press, London (2000)

    Google Scholar 

  25. van Dongen, S.: Graph Clustering by Flow Simulation. PhD thesis, Univ. of Utrecht (2000)

    Google Scholar 

  26. Xu, C., Lau, F.C.M.: Load Balancing in Parallel Computers. Kluwer, Dordrecht (1997)

    Google Scholar 

  27. Yen, L., Vanvyve, D., Wouters, F., Fouss, F., Verleysen, M., Saerens, M.: Clustering using a random-walk based distance measure. In: ESANN 2005, European Symposium on Artificial Neural Networks (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meyerhenke, H., Sauerwald, T. (2006). Analyzing Disturbed Diffusion on Networks. In: Asano, T. (eds) Algorithms and Computation. ISAAC 2006. Lecture Notes in Computer Science, vol 4288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11940128_44

Download citation

  • DOI: https://doi.org/10.1007/11940128_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49694-6

  • Online ISBN: 978-3-540-49696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics